Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44090
Título: Advances in automatic detection of failures in electric machines using audio signals
Autores/as: Alonso, Jesús B. 
Travieso, Carlos M. 
Ferrer, Miguel A. 
Henriquez, P. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Chaos, Lyapunov exponents, Correlation dimension, Correlation entropy and expert systems
Fecha de publicación: 2007
Publicación seriada: Proceedings of the 11th IASTED International Conference on Artificial Intelligence and Soft Computing, ASC 2007
Conferencia: 11th IASTED International Conference on Artificial Intelligence and Soft Computing 
11th IASTED International Conference on Artificial Intelligence and Soft Computing, ASC 2007 
Resumen: in this paper nonlinear chaotic features have been obtained from audio signals of different kinds of electric machines as a first step in order to develop a personal computer (PC) based artificial intelligence system for the fault identification and diagnosis of electric machines. These techniques can be applied in fault identification and diagnosis in industrial scenarios by mean of expert systems. Different nonlinear features (based on chaos theory) to detect changes of the audio signal were studied: maximal Lyapunov exponent, correlation dimension and correlation entropy. We also studied related measurement such as the time delay and the value of the first minimum of the mutual information function, the first zero of the autocorrelation function and Shannon entropy. We used different recordings from different scenarios (PC fans, an iron cutter and an electric drill).
URI: http://hdl.handle.net/10553/44090
ISBN: 9780889866935
Fuente: Proceedings of the 11th IASTED International Conference on Artificial Intelligence and Soft Computing, ASC 2007, p. 114-119
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 25-feb-2024

Visitas

88
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.