Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/44056
DC FieldValueLanguage
dc.contributor.authorTravieso, Carlos M.en_US
dc.contributor.authorAlonso, Jesús B.en_US
dc.contributor.authorFerrer, Miguel A.en_US
dc.contributor.authorCorsino, Jorgeen_US
dc.date.accessioned2018-11-21T19:53:54Z-
dc.date.available2018-11-21T19:53:54Z-
dc.date.issued2010en_US
dc.identifier.isbn9781615208937-
dc.identifier.urihttp://hdl.handle.net/10553/44056-
dc.description.abstractIn the present chapter, the authors have developed a tool for the automatic arrhythmias detection, based on time-frequency features and using a Support Vector Machines (SVM) as classifier. Arrhythmia Database Massachusetts Institute of Technology (MIT) has been used in the work in order to detect eight different states, seven are pathologies and one is normal. The unions of different blocks and its optimization have found success rates of 99.82% for RR' interval detection from electrocardiogram (PQRST waves), and 99.23% for pathologic detection. In particular, the authors have used wavelet transform in order to characterize the wave of electrocardiogram (ECG), based on Biorthogonal family, achieving the most discriminative coefficients. A discussion on arrhythmia ECG classification methods is also presented in this paper.en_US
dc.languagespaen_US
dc.relation.ispartofSoft Computing Methods for Practical Environment Solutions: Techniques and Studiesen_US
dc.sourceSoft Computing Methods for Practical Environment Solutions: Techniques and Studies, p. 204-218en_US
dc.subject3307 Tecnología electrónicaen_US
dc.titleAutomatic arrhythmia detectionen_US
dc.typeinfo:eu-repo/semantics/bookPartes
dc.typeBookes
dc.identifier.doi10.4018/978-1-61520-893-7.ch013
dc.identifier.scopus84901569110-
dc.contributor.authorscopusid6602376272-
dc.contributor.authorscopusid24774957200-
dc.contributor.authorscopusid55636321172-
dc.contributor.authorscopusid25638179000-
dc.description.lastpage218-
dc.description.firstpage204-
dc.investigacionIngeniería y Arquitecturaen_US
dc.investigacionCienciasen_US
dc.type2Capítulo de libroen_US
dc.date.coverdateDiciembre 2010
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Appears in Collections:Capítulo de libro
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.