Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44056
Título: | Automatic arrhythmia detection | Autores/as: | Travieso, Carlos M. Alonso, Jesús B. Ferrer, Miguel A. Corsino, Jorge |
Clasificación UNESCO: | 3307 Tecnología electrónica | Fecha de publicación: | 2010 | Publicación seriada: | Soft Computing Methods for Practical Environment Solutions: Techniques and Studies | Resumen: | In the present chapter, the authors have developed a tool for the automatic arrhythmias detection, based on time-frequency features and using a Support Vector Machines (SVM) as classifier. Arrhythmia Database Massachusetts Institute of Technology (MIT) has been used in the work in order to detect eight different states, seven are pathologies and one is normal. The unions of different blocks and its optimization have found success rates of 99.82% for RR' interval detection from electrocardiogram (PQRST waves), and 99.23% for pathologic detection. In particular, the authors have used wavelet transform in order to characterize the wave of electrocardiogram (ECG), based on Biorthogonal family, achieving the most discriminative coefficients. A discussion on arrhythmia ECG classification methods is also presented in this paper. | URI: | http://hdl.handle.net/10553/44056 | ISBN: | 9781615208937 | DOI: | 10.4018/978-1-61520-893-7.ch013 | Fuente: | Soft Computing Methods for Practical Environment Solutions: Techniques and Studies, p. 204-218 |
Colección: | Capítulo de libro |
Visitas
65
actualizado el 25-nov-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.