Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44024
Título: | Voice pathology detection in continuous speech using nonlinear dynamics | Autores/as: | Orozco, Juan R. Vargas, Jesus F. Alonso, Jesus B. Ferrer, Miguel A. Travieso, Carlos M. Henríquez, P. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Pathology , Speech , Complexity theory , Accuracy , Correlation , Estimation , Acoustics | Fecha de publicación: | 2012 | Publicación seriada: | 2012 11th International Conference on Information Science, Signal Processing and their Applications, ISSPA 2012 | Conferencia: | 2012 11th International Conference on Information Science, Signal Processing and their Applications, ISSPA 2012 | Resumen: | A novel methodology, based on the estimation of nonlinear dynamics features, is presented for automatic detection of pathologies in the phonatory system considering continuous speech records (text-dependent). The proposed automatic segmentation and characterization of the voice registers does not require the estimation of the pitch period, therefore it doesn't depend on the gender and intonation of the patients. A robust methodology for finding the features that better discriminate between healthy and pathological voices and also for analyzing the affinity among them is also presented. An average success rate of 95% ± 3.54% in the automatic detection of voice pathologies is achieved considering only six features. The results indicate that nonlinear dynamics is a good alternative for automatic detection of abnormal phonations in continuous speech. | URI: | http://hdl.handle.net/10553/44024 | ISBN: | 9781467303828 | DOI: | 10.1109/ISSPA.2012.6310440 | Fuente: | 2012 11th International Conference on Information Science, Signal Processing and their Applications, ISSPA 2012 (6310440), p. 1030-1033 |
Colección: | Actas de congresos |
Citas SCOPUSTM
11
actualizado el 15-dic-2024
Visitas
76
actualizado el 27-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.