Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44024
Título: Voice pathology detection in continuous speech using nonlinear dynamics
Autores/as: Orozco, Juan R.
Vargas, Jesus F.
Alonso, Jesus B. 
Ferrer, Miguel A. 
Travieso, Carlos M. 
Henríquez, P. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Pathology , Speech , Complexity theory , Accuracy , Correlation , Estimation , Acoustics
Fecha de publicación: 2012
Publicación seriada: 2012 11th International Conference on Information Science, Signal Processing and their Applications, ISSPA 2012
Conferencia: 2012 11th International Conference on Information Science, Signal Processing and their Applications, ISSPA 2012 
Resumen: A novel methodology, based on the estimation of nonlinear dynamics features, is presented for automatic detection of pathologies in the phonatory system considering continuous speech records (text-dependent). The proposed automatic segmentation and characterization of the voice registers does not require the estimation of the pitch period, therefore it doesn't depend on the gender and intonation of the patients. A robust methodology for finding the features that better discriminate between healthy and pathological voices and also for analyzing the affinity among them is also presented. An average success rate of 95% ± 3.54% in the automatic detection of voice pathologies is achieved considering only six features. The results indicate that nonlinear dynamics is a good alternative for automatic detection of abnormal phonations in continuous speech.
URI: http://hdl.handle.net/10553/44024
ISBN: 9781467303828
DOI: 10.1109/ISSPA.2012.6310440
Fuente: 2012 11th International Conference on Information Science, Signal Processing and their Applications, ISSPA 2012 (6310440), p. 1030-1033
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

11
actualizado el 15-dic-2024

Visitas

76
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.