Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44008
Título: Spider specie identification and verification based on pattern recognition of it cobweb
Autores/as: Ticay-Rivas, Jaime R.
Del Pozo-Baños, Marcos
Eberhard, William G.
Alonso, Jesús B. 
Travieso, Carlos M. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Spider specie recognition, Biometrics on animals, Cobwebs, Identification/Verification approaches, Pattern recognition, Expert systems, Artificial intelligence
Fecha de publicación: 2013
Editor/a: 0957-4174
Publicación seriada: Expert Systems with Applications 
Resumen: Biodiversity conservation is a global priority where the study of every type of living form is a fundamental task. Inside the huge number of the planet species, spiders play an important role in almost every habitat. This paper presents a comprehensive study on the reliability of the most used features extractors to face the problem of spider specie recognition by using their cobwebs, both in identification and verification modes. We have applied a preprocessing to the cobwebs images in order to obtain only the valid information and compute the optimal size to reach the highest performance. We have used the principal component analysis (PCA), independent component analysis (ICA), Discrete Cosine Transform (DCT), Wavelet Transform (DWT) and discriminative common vectors as features extractors, and proposed the fusion of several of them to improve the system’s performance. Finally, we have used the Least Square Vector Support Machine with radial basis function as a classifier. We have implemented K-Fold and Hold-Out cross-validation techniques in order to obtain reliable results. PCA provided the best performance, reaching a 99.65% ± 0.21 of success rate in identification mode and 99.98% ± 0.04 of the area under de Reveicer Operating Characteristic (ROC) curve in verification mode. The best combination of features extractors was PCA, DCT, DWT and ICA, which achieved a 99.96% ± 0.16 of success rate in identification mode and perfect verification.
URI: http://hdl.handle.net/10553/44008
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2013.01.024
Fuente: Expert Systems with Applications[ISSN 0957-4174],v. 40, p. 4213-4225
Colección:Artículos
Vista completa

Citas SCOPUSTM   

10
actualizado el 12-ene-2025

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 12-ene-2025

Visitas

64
actualizado el 31-dic-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.