Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/44008
DC FieldValueLanguage
dc.contributor.authorTicay-Rivas, Jaime R.en_US
dc.contributor.authorDel Pozo-Baños, Marcosen_US
dc.contributor.authorEberhard, William G.en_US
dc.contributor.authorAlonso, Jesús B.en_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.contributor.otherTravieso-Gonzalez, Carlos M.-
dc.contributor.otherdel Pozo Banos, Marcos-
dc.contributor.otherAlonso-Hernandez, Jesus B.-
dc.date.accessioned2018-11-21T19:32:01Z-
dc.date.available2018-11-21T19:32:01Z-
dc.date.issued2013en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://hdl.handle.net/10553/44008-
dc.description.abstractBiodiversity conservation is a global priority where the study of every type of living form is a fundamental task. Inside the huge number of the planet species, spiders play an important role in almost every habitat. This paper presents a comprehensive study on the reliability of the most used features extractors to face the problem of spider specie recognition by using their cobwebs, both in identification and verification modes. We have applied a preprocessing to the cobwebs images in order to obtain only the valid information and compute the optimal size to reach the highest performance. We have used the principal component analysis (PCA), independent component analysis (ICA), Discrete Cosine Transform (DCT), Wavelet Transform (DWT) and discriminative common vectors as features extractors, and proposed the fusion of several of them to improve the system’s performance. Finally, we have used the Least Square Vector Support Machine with radial basis function as a classifier. We have implemented K-Fold and Hold-Out cross-validation techniques in order to obtain reliable results. PCA provided the best performance, reaching a 99.65% ± 0.21 of success rate in identification mode and 99.98% ± 0.04 of the area under de Reveicer Operating Characteristic (ROC) curve in verification mode. The best combination of features extractors was PCA, DCT, DWT and ICA, which achieved a 99.96% ± 0.16 of success rate in identification mode and perfect verification.en_US
dc.languagespaen_US
dc.publisher0957-4174-
dc.relation.ispartofExpert Systems with Applicationsen_US
dc.sourceExpert Systems with Applications[ISSN 0957-4174],v. 40, p. 4213-4225en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherSpider specie recognition, Biometrics on animals, Cobwebs, Identification/Verification approaches, Pattern recognition, Expert systems, Artificial intelligenceen_US
dc.titleSpider specie identification and verification based on pattern recognition of it cobweben_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.eswa.2013.01.024
dc.identifier.scopus84875370518-
dc.identifier.isi000317162900039-
dcterms.isPartOfExpert Systems With Applications-
dcterms.sourceExpert Systems With Applications[ISSN 0957-4174],v. 40 (10), p. 4213-4225-
dc.contributor.authorscopusid37862263900-
dc.contributor.authorscopusid35241841700-
dc.contributor.authorscopusid7007175295-
dc.contributor.authorscopusid24774957200-
dc.contributor.authorscopusid6602376272-
dc.description.lastpage4225-
dc.description.firstpage4213-
dc.relation.volume40-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000317162900039-
dc.contributor.daisngid3828233-
dc.contributor.daisngid2996557-
dc.contributor.daisngid82596-
dc.contributor.daisngid418703-
dc.contributor.daisngid265761-
dc.identifier.investigatorRIDN-5967-2014-
dc.identifier.investigatorRIDR-8617-2016-
dc.identifier.investigatorRIDN-5977-2014-
dc.identifier.externalWOS:000317162900039-
dc.contributor.wosstandardWOS:Ticay-Rivas, JR
dc.contributor.wosstandardWOS:del Pozo-Banos, M
dc.contributor.wosstandardWOS:Eberhard, WG
dc.contributor.wosstandardWOS:Alonso, JB
dc.contributor.wosstandardWOS:Travieso, CM
dc.date.coverdateAgosto 2013
dc.identifier.ulpgces
dc.description.sjr1,364
dc.description.jcr1,965
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.