Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/43976
DC FieldValueLanguage
dc.contributor.authorLópez-De-Ipiña, Karmeleen_US
dc.contributor.authorSolé-Casals, Jordien_US
dc.contributor.authorEguiraun, Harkaitzen_US
dc.contributor.authorAlonso, J. B.en_US
dc.contributor.authorTravieso, C. M.en_US
dc.contributor.authorEzeiza, Aitzolen_US
dc.contributor.authorBarroso, Noraen_US
dc.contributor.authorEcay-Torres, Miriamen_US
dc.contributor.authorMartinez-Lage, Pabloen_US
dc.contributor.authorBeitia, Blancaen_US
dc.date.accessioned2018-11-21T19:17:44Z-
dc.date.available2018-11-21T19:17:44Z-
dc.date.issued2015en_US
dc.identifier.issn0885-2308en_US
dc.identifier.urihttp://hdl.handle.net/10553/43976-
dc.description.abstractAlzheimer's disease (AD) is the most prevalent form of degenerative dementia; it has a high socio-economic impact in Western countries. The purpose of our project is to contribute to earlier diagnosis of AD and allow better estimates of its severity by using automatic analysis performed through new biomarkers extracted through non-invasive intelligent methods. The method selected is based on speech biomarkers derived from the analysis of spontaneous speech (SS). Thus the main goal of the present work is feature search in SS, aiming at pre-clinical evaluation whose results can be used to select appropriate tests for AD diagnosis. The feature set employed in our earlier work offered some hopeful conclusions but failed to capture the nonlinear dynamics of speech that are present in the speech waveforms. The extra information provided by the nonlinear features could be especially useful when training data is limited. In this work, the fractal dimension (FD) of the observed time series is combined with linear parameters in the feature vector in order to enhance the performance of the original system while controlling the computational cost.en_US
dc.languagespaen_US
dc.publisher0885-2308-
dc.relation.ispartofComputer Speech and Languageen_US
dc.sourceComputer Speech and Language[ISSN 0885-2308],v. 30, p. 43-60en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherNonlinear speech processing, Alzheimer's disease diagnosis, Spontaneous speech, Fractal dimensionsen_US
dc.titleFeature selection for spontaneous speech analysis to aid in Alzheimer's disease diagnosis: A fractal dimension approachen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.csl.2014.08.002
dc.identifier.scopus84913592088-
dc.identifier.isi000345556600005
dc.contributor.authorscopusid56263484400-
dc.contributor.authorscopusid14018739300-
dc.contributor.authorscopusid55832815700-
dc.contributor.authorscopusid24774957200-
dc.contributor.authorscopusid6602376272-
dc.contributor.authorscopusid14022747600-
dc.contributor.authorscopusid23392059500-
dc.contributor.authorscopusid55765237800-
dc.contributor.authorscopusid6603115791-
dc.contributor.authorscopusid56433495500-
dc.description.lastpage60-
dc.description.firstpage43-
dc.relation.volume30-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid1399740
dc.contributor.daisngid642260
dc.contributor.daisngid4627708
dc.contributor.daisngid418703
dc.contributor.daisngid265761
dc.contributor.daisngid1492715
dc.contributor.daisngid1625336
dc.contributor.daisngid6802840
dc.contributor.daisngid499760
dc.contributor.daisngid6336762
dc.contributor.wosstandardWOS:Lopez-de-Ipina, K
dc.contributor.wosstandardWOS:Sole-Casals, J
dc.contributor.wosstandardWOS:Eguiraun, H
dc.contributor.wosstandardWOS:Alonso, JB
dc.contributor.wosstandardWOS:Travieso, CM
dc.contributor.wosstandardWOS:Ezeiza, A
dc.contributor.wosstandardWOS:Barroso, N
dc.contributor.wosstandardWOS:Ecay-Torres, M
dc.contributor.wosstandardWOS:Martinez-Lage, P
dc.contributor.wosstandardWOS:Beitia, B
dc.date.coverdateEnero 2015
dc.identifier.ulpgces
dc.description.sjr0,785
dc.description.jcr1,324
dc.description.sjrqQ1
dc.description.jcrqQ3
dc.description.scieSCIE
dc.description.erihplusERIH PLUS
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

48
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

37
checked on Nov 17, 2024

Page view(s)

52
checked on Dec 10, 2022

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.