Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43976
Título: Feature selection for spontaneous speech analysis to aid in Alzheimer's disease diagnosis: A fractal dimension approach
Autores/as: López-De-Ipiña, Karmele
Solé-Casals, Jordi
Eguiraun, Harkaitz
Alonso, J. B. 
Travieso, C. M. 
Ezeiza, Aitzol
Barroso, Nora
Ecay-Torres, Miriam
Martinez-Lage, Pablo
Beitia, Blanca
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Nonlinear speech processing, Alzheimer's disease diagnosis, Spontaneous speech, Fractal dimensions
Fecha de publicación: 2015
Editor/a: 0885-2308
Publicación seriada: Computer Speech and Language 
Resumen: Alzheimer's disease (AD) is the most prevalent form of degenerative dementia; it has a high socio-economic impact in Western countries. The purpose of our project is to contribute to earlier diagnosis of AD and allow better estimates of its severity by using automatic analysis performed through new biomarkers extracted through non-invasive intelligent methods. The method selected is based on speech biomarkers derived from the analysis of spontaneous speech (SS). Thus the main goal of the present work is feature search in SS, aiming at pre-clinical evaluation whose results can be used to select appropriate tests for AD diagnosis. The feature set employed in our earlier work offered some hopeful conclusions but failed to capture the nonlinear dynamics of speech that are present in the speech waveforms. The extra information provided by the nonlinear features could be especially useful when training data is limited. In this work, the fractal dimension (FD) of the observed time series is combined with linear parameters in the feature vector in order to enhance the performance of the original system while controlling the computational cost.
URI: http://hdl.handle.net/10553/43976
ISSN: 0885-2308
DOI: 10.1016/j.csl.2014.08.002
Fuente: Computer Speech and Language[ISSN 0885-2308],v. 30, p. 43-60
Colección:Artículos
Vista completa

Citas SCOPUSTM   

48
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

37
actualizado el 17-nov-2024

Visitas

52
actualizado el 10-dic-2022

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.