Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/43952
Título: | Automated segmentation of powdery mildew disease from cherry leaves using image processing | Autores/as: | Gupta, Varun Sengar, Namita Dutta, Malay Kishore Travieso, Carlos M. Alonso, Jesús B. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Diseases Agriculture Image segmentation Computational efficiency Algorithm design and analysis, et al. |
Fecha de publicación: | 2017 | Conferencia: | 5th IEEE International Work Conference on Bio-Inspired Intelligence, IWOBI 2017 | Resumen: | An automated detection of plant disease is an important task to find features or abnormalities in plant and its effect on the fruits. In this paper an algorithm is proposed for detection of powdery mildew disease from a cherry leaf images. The proposed method uses an automated strategic removal of background from the image and then extracting the desired diseased portion. A combination of morphological operators and intensity based thresholding are used which creates a method computationally efficient and less complex. A set of public arXiv e-prints data are used to test the proposed algorithm. The tested algorithm achieves accuracy of 99%. | URI: | http://hdl.handle.net/10553/43952 | ISBN: | 9781538608500 | DOI: | 10.1109/IWOBI.2017.8006454 | Fuente: | 2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings,v. 2017-January (8006454) |
Colección: | Actas de congresos |
Citas SCOPUSTM
6
actualizado el 01-dic-2024
Visitas
165
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.