Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43952
Título: Automated segmentation of powdery mildew disease from cherry leaves using image processing
Autores/as: Gupta, Varun
Sengar, Namita
Dutta, Malay Kishore
Travieso, Carlos M. 
Alonso, Jesús B. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Diseases
Agriculture
Image segmentation
Computational efficiency
Algorithm design and analysis, et al.
Fecha de publicación: 2017
Conferencia: 5th IEEE International Work Conference on Bio-Inspired Intelligence, IWOBI 2017 
Resumen: An automated detection of plant disease is an important task to find features or abnormalities in plant and its effect on the fruits. In this paper an algorithm is proposed for detection of powdery mildew disease from a cherry leaf images. The proposed method uses an automated strategic removal of background from the image and then extracting the desired diseased portion. A combination of morphological operators and intensity based thresholding are used which creates a method computationally efficient and less complex. A set of public arXiv e-prints data are used to test the proposed algorithm. The tested algorithm achieves accuracy of 99%.
URI: http://hdl.handle.net/10553/43952
ISBN: 9781538608500
DOI: 10.1109/IWOBI.2017.8006454
Fuente: 2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings,v. 2017-January (8006454)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

6
actualizado el 01-dic-2024

Visitas

165
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.