Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43952
Campo DC Valoridioma
dc.contributor.authorGupta, Varunen_US
dc.contributor.authorSengar, Namitaen_US
dc.contributor.authorDutta, Malay Kishoreen_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.contributor.authorAlonso, Jesús B.en_US
dc.date.accessioned2018-11-21T19:07:02Z-
dc.date.available2018-11-21T19:07:02Z-
dc.date.issued2017en_US
dc.identifier.isbn9781538608500en_US
dc.identifier.urihttp://hdl.handle.net/10553/43952-
dc.description.abstractAn automated detection of plant disease is an important task to find features or abnormalities in plant and its effect on the fruits. In this paper an algorithm is proposed for detection of powdery mildew disease from a cherry leaf images. The proposed method uses an automated strategic removal of background from the image and then extracting the desired diseased portion. A combination of morphological operators and intensity based thresholding are used which creates a method computationally efficient and less complex. A set of public arXiv e-prints data are used to test the proposed algorithm. The tested algorithm achieves accuracy of 99%.en_US
dc.languageengen_US
dc.source2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings,v. 2017-January (8006454)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherDiseasesen_US
dc.subject.otherAgricultureen_US
dc.subject.otherImage segmentationen_US
dc.subject.otherComputational efficiencyen_US
dc.subject.otherAlgorithm design and analysisen_US
dc.subject.otherImage recognitionen_US
dc.subject.otherPowdery Mildewen_US
dc.subject.otherThresholdingen_US
dc.subject.otherMorphological operatorsen_US
dc.titleAutomated segmentation of powdery mildew disease from cherry leaves using image processingen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference5th IEEE International Work Conference on Bio-Inspired Intelligence, IWOBI 2017en_US
dc.identifier.doi10.1109/IWOBI.2017.8006454en_US
dc.identifier.scopus85029696890-
dc.contributor.authorscopusid57193866196-
dc.contributor.authorscopusid56964145800-
dc.contributor.authorscopusid35291803600-
dc.contributor.authorscopusid6602376272-
dc.contributor.authorscopusid24774957200-
dc.identifier.issue8006454-
dc.relation.volume2017-Januaryen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateJulio 2017en_US
dc.identifier.conferenceidevents121608-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate10-07-2017-
crisitem.event.eventsenddate12-07-2017-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.