Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43619
Campo DC Valoridioma
dc.contributor.authorFrutos, M.-
dc.contributor.authorMéndez, M.-
dc.contributor.authorTohmé, F.-
dc.contributor.authorBroz, D.-
dc.date.accessioned2018-11-21T16:35:13Z-
dc.date.available2018-11-21T16:35:13Z-
dc.date.issued2013-
dc.identifier.issn2356-6140-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/43619-
dc.description.abstractMany of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier.-
dc.languageeng-
dc.relation.ispartofThe Scientific World Journal-
dc.sourceThe Scientific World Journal [ISSN 2356-6140], v. 2013, (418396)-
dc.subject120304 Inteligencia artificial-
dc.subject1207 Investigación operativa-
dc.subject.otherGenetic Algorithm-
dc.subject.otherSearch-
dc.titleComparison of multiobjective evolutionary algorithms for operations scheduling under machine availability constraints-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1155/2013/418396-
dc.identifier.scopus84896330335-
dc.identifier.isi000329662500001-
dc.contributor.authorscopusid24482935700-
dc.contributor.authorscopusid23474473600-
dc.contributor.authorscopusid57203535337-
dc.contributor.authorscopusid55600920700-
dc.identifier.eissn1537-744X-
dc.identifier.issue418396-
dc.relation.volume2013-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngid4522889-
dc.contributor.daisngid9011687-
dc.contributor.daisngid1085467-
dc.contributor.daisngid3422771-
dc.description.numberofpages9-
dc.utils.revision-
dc.contributor.wosstandardWOS:Frutos, M-
dc.contributor.wosstandardWOS:Mendez, M-
dc.contributor.wosstandardWOS:Tohme, F-
dc.contributor.wosstandardWOS:Broz, D-
dc.date.coverdate2013-
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-7133-7108-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMéndez Babey, Máximo-
Colección:Artículos
miniatura
PDF
Adobe PDF (1,07 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.