Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/43619
DC FieldValueLanguage
dc.contributor.authorFrutos, M.-
dc.contributor.authorMéndez, M.-
dc.contributor.authorTohmé, F.-
dc.contributor.authorBroz, D.-
dc.date.accessioned2018-11-21T16:35:13Z-
dc.date.available2018-11-21T16:35:13Z-
dc.date.issued2013-
dc.identifier.issn2356-6140-
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/43619-
dc.description.abstractMany of the problems that arise in production systems can be handled with multiobjective techniques. One of those problems is that of scheduling operations subject to constraints on the availability of machines and buffer capacity. In this paper we analyze different Evolutionary multiobjective Algorithms (MOEAs) for this kind of problems. We consider an experimental framework in which we schedule production operations for four real world Job-Shop contexts using three algorithms, NSGAII, SPEA2, and IBEA. Using two performance indexes, Hypervolume and R2, we found that SPEA2 and IBEA are the most efficient for the tasks at hand. On the other hand IBEA seems to be a better choice of tool since it yields more solutions in the approximate Pareto frontier.-
dc.languageeng-
dc.relation.ispartofThe Scientific World Journal-
dc.sourceThe Scientific World Journal [ISSN 2356-6140], v. 2013, (418396)-
dc.subject120304 Inteligencia artificial-
dc.subject1207 Investigación operativa-
dc.subject.otherGenetic Algorithm-
dc.subject.otherSearch-
dc.titleComparison of multiobjective evolutionary algorithms for operations scheduling under machine availability constraints-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1155/2013/418396-
dc.identifier.scopus84896330335-
dc.identifier.isi000329662500001-
dc.contributor.authorscopusid24482935700-
dc.contributor.authorscopusid23474473600-
dc.contributor.authorscopusid57203535337-
dc.contributor.authorscopusid55600920700-
dc.identifier.eissn1537-744X-
dc.identifier.issue418396-
dc.relation.volume2013-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngid4522889-
dc.contributor.daisngid9011687-
dc.contributor.daisngid1085467-
dc.contributor.daisngid3422771-
dc.description.numberofpages9-
dc.utils.revision-
dc.contributor.wosstandardWOS:Frutos, M-
dc.contributor.wosstandardWOS:Mendez, M-
dc.contributor.wosstandardWOS:Tohme, F-
dc.contributor.wosstandardWOS:Broz, D-
dc.date.coverdate2013-
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-7133-7108-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMéndez Babey, Máximo-
Appears in Collections:Artículos
Thumbnail
PDF
Adobe PDF (1,07 MB)
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 24, 2024

Page view(s)

85
checked on Mar 2, 2024

Download(s)

96
checked on Mar 2, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.