Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/43466
Título: Smile detection using local binary patterns and support vector machines
Autores/as: Freire Obregón, David Sebastián 
Castrillón, M. 
Déniz, O.
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Facial analysis
SVM
K-NN
PCA
LBP
Fecha de publicación: 2009
Conferencia: 4th International Conference on Computer Vision Theory and Applications 
Resumen: Facial expression recognition has been the subject of much research in the last years within the Computer Vision community. The detection of smiles, however, has received less attention. Its distinctive configuration may pose less problem than other, at times subtle, expressions. On the other hand, smiles can still be very useful as a measure of happiness, enjoyment or even approval. Geometrical or local-based detection approaches like the use of lip edges may not be robust enough and thus researchers have focused on applying machine learning to appearance-based descriptors. This work makes an extensive experimental study of smile detection testing the Local Binary Patterns (LBP) as main descriptors of the image, along with the powerful Support Vector Machines classifier. The results show that error rates can be acceptable, although there is still room for improvement.
URI: http://hdl.handle.net/10553/43466
ISBN: 978-989-8111-69-2
DOI: 10.5220/0001792303980401
Fuente: VISAPP 2009 - Proceedings of the 4th International Conference on Computer Vision Theory and Applications,v. 1, p. 398-401
Colección:Actas de congresos
miniatura
Adobe PDF (185,15 kB)
Vista completa

Citas SCOPUSTM   

4
actualizado el 05-ene-2025

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 25-feb-2024

Visitas

143
actualizado el 01-nov-2024

Descargas

30
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.