Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/43466
Título: | Smile detection using local binary patterns and support vector machines | Autores/as: | Freire Obregón, David Sebastián Castrillón, M. Déniz, O. |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Facial analysis SVM K-NN PCA LBP |
Fecha de publicación: | 2009 | Conferencia: | 4th International Conference on Computer Vision Theory and Applications | Resumen: | Facial expression recognition has been the subject of much research in the last years within the Computer Vision community. The detection of smiles, however, has received less attention. Its distinctive configuration may pose less problem than other, at times subtle, expressions. On the other hand, smiles can still be very useful as a measure of happiness, enjoyment or even approval. Geometrical or local-based detection approaches like the use of lip edges may not be robust enough and thus researchers have focused on applying machine learning to appearance-based descriptors. This work makes an extensive experimental study of smile detection testing the Local Binary Patterns (LBP) as main descriptors of the image, along with the powerful Support Vector Machines classifier. The results show that error rates can be acceptable, although there is still room for improvement. | URI: | http://hdl.handle.net/10553/43466 | ISBN: | 978-989-8111-69-2 | DOI: | 10.5220/0001792303980401 | Fuente: | VISAPP 2009 - Proceedings of the 4th International Conference on Computer Vision Theory and Applications,v. 1, p. 398-401 |
Colección: | Actas de congresos |
Citas SCOPUSTM
4
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
3
actualizado el 25-feb-2024
Visitas
143
actualizado el 01-nov-2024
Descargas
30
actualizado el 01-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.