Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42930
Campo DC Valoridioma
dc.contributor.authorPrieto, Faustinoen_US
dc.contributor.authorGómez Déniz, Emilioen_US
dc.contributor.authorSarabia, José Maríaen_US
dc.date.accessioned2018-11-21T11:44:08Z-
dc.date.available2018-11-21T11:44:08Z-
dc.date.issued2014en_US
dc.identifier.issn0001-4575en_US
dc.identifier.urihttp://hdl.handle.net/10553/42930-
dc.description.abstractThis study shows how road traffic networks events, in particular road accidents on blackspots, can be modelled with simple probabilistic distributions. We considered the number of crashes and the number of fatalities on Spanish blackspots in the period 2003-2007, from Spanish General Directorate of Traffic (DGT). We modelled those datasets, respectively, with the discrete generalized Pareto distribution (a discrete parametric model with three parameters) and with the discrete Lomax distribution (a discrete parametric model with two parameters, and particular case of the previous model). For that, we analyzed the basic properties of both parametric models: cumulative distribution, survival, probability mass, quantile and hazard functions, genesis and rth-order moments; applied two estimation methods of their parameters: the μ and (μ + 1) frequency method and the maximum likelihood method; used two goodness-of-fit tests: Chi-square test and discrete Kolmogorov-Smirnov test based on bootstrap resampling; and compared them with the classical negative binomial distribution in terms of absolute probabilities and in models including covariates. We found that those probabilistic models can be useful to describe the road accident blackspots datasets analyzed.en_US
dc.languageengen_US
dc.publisher0001-4575
dc.relation.ispartofAccident analysis and preventionen_US
dc.sourceAccident Analysis and Prevention[ISSN 0001-4575],v. 71, p. 38-49en_US
dc.subject1209 Estadísticaen_US
dc.subject.otherDistribuciónen_US
dc.subject.otherSegurosen_US
dc.titleModelling road accident blackspots data with the discrete generalized Pareto distributionen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.aap.2014.05.005
dc.identifier.scopus84901647264-
dc.identifier.isi000340304000006
dc.contributor.authorscopusid26667992500
dc.contributor.authorscopusid15724912000
dc.contributor.authorscopusid6701455820
dc.description.lastpage49-
dc.description.firstpage38-
dc.relation.volume71-
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.contributor.daisngid31451971
dc.contributor.daisngid610603
dc.contributor.daisngid311897
dc.contributor.wosstandardWOS:Prieto, F
dc.contributor.wosstandardWOS:Gomez-Deniz, E
dc.contributor.wosstandardWOS:Sarabia, JM
dc.date.coverdateEnero 2014
dc.identifier.ulpgces
dc.description.sjr1,19
dc.description.jcr2,07
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.ssciSSCI
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0002-5072-7908-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameGómez Déniz, Emilio-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.