Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42930
Título: | Modelling road accident blackspots data with the discrete generalized Pareto distribution | Autores/as: | Prieto, Faustino Gómez Déniz, Emilio Sarabia, José María |
Clasificación UNESCO: | 1209 Estadística | Palabras clave: | Distribución Seguros |
Fecha de publicación: | 2014 | Editor/a: | 0001-4575 | Publicación seriada: | Accident analysis and prevention | Resumen: | This study shows how road traffic networks events, in particular road accidents on blackspots, can be modelled with simple probabilistic distributions. We considered the number of crashes and the number of fatalities on Spanish blackspots in the period 2003-2007, from Spanish General Directorate of Traffic (DGT). We modelled those datasets, respectively, with the discrete generalized Pareto distribution (a discrete parametric model with three parameters) and with the discrete Lomax distribution (a discrete parametric model with two parameters, and particular case of the previous model). For that, we analyzed the basic properties of both parametric models: cumulative distribution, survival, probability mass, quantile and hazard functions, genesis and rth-order moments; applied two estimation methods of their parameters: the μ and (μ + 1) frequency method and the maximum likelihood method; used two goodness-of-fit tests: Chi-square test and discrete Kolmogorov-Smirnov test based on bootstrap resampling; and compared them with the classical negative binomial distribution in terms of absolute probabilities and in models including covariates. We found that those probabilistic models can be useful to describe the road accident blackspots datasets analyzed. | URI: | http://hdl.handle.net/10553/42930 | ISSN: | 0001-4575 | DOI: | 10.1016/j.aap.2014.05.005 | Fuente: | Accident Analysis and Prevention[ISSN 0001-4575],v. 71, p. 38-49 |
Colección: | Artículos |
Citas SCOPUSTM
32
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
24
actualizado el 17-nov-2024
Visitas
25
actualizado el 18-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.