Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42866
Título: Experiments and reference models in training neural networks for short-term wind power forecasting in electricity markets
Autores/as: Mendez, Juan 
Lorenzo, Javier 
Hernández, Mario 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Energía eólica
Redes neuronales
Fecha de publicación: 2009
Proyectos: Tecnicas de Visión Para la Interacción en Entornos de Interior Con Elaboración Mapas Cognitivos en Sistemas Perceptuales Heterogéneos. 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 10th International Work-Conference on Artificial Neural Networks (IWANN 2009) 
10th International Work-Conference on Artificial Neural Networks, IWANN 2009 
Resumen: Many published studies in wind power forecasting based on Neural Networks have provided performance factors based on error criteria. Based on the standard protocol for forecasting, the published results must provide improvement criteria over the persistence or references models of its same place. Persistence forecasting is the easier way of prediction in time series, but first order Wiener predictive filter is an enhancement of pure persistence model that have been adopted as the reference model for wind power forecasting. Pure enhanced persistence is simple but hard to beat in short-term prediction. This paper shows some experiments that have been performed by applying the standard protocols with Feed Forward and Recurrent Neural Networks architectures in the background of the requirements for Open Electricity Markets.
URI: http://hdl.handle.net/10553/42866
ISBN: 978-3-642-02477-1
3642024777
ISSN: 0302-9743
DOI: 10.1007/978-3-642-02478-8_161
Fuente: Cabestany J., Sandoval F., Prieto A., Corchado J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg
Colección:Actas de congresos
miniatura
Preprint
Adobe PDF (111,3 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.