Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42866
Campo DC Valoridioma
dc.contributor.authorMendez, Juanen_US
dc.contributor.authorLorenzo, Javieren_US
dc.contributor.authorHernández, Marioen_US
dc.contributor.otherMendez, Juan-
dc.contributor.otherLorenzo-Navarro, Javier-
dc.contributor.otherLorenzo-Navarro, Javier-
dc.date.accessioned2018-11-21T11:27:32Z-
dc.date.available2018-11-21T11:27:32Z-
dc.date.issued2009en_US
dc.identifier.isbn978-3-642-02477-1en_US
dc.identifier.isbn3642024777
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10553/42866-
dc.description.abstractMany published studies in wind power forecasting based on Neural Networks have provided performance factors based on error criteria. Based on the standard protocol for forecasting, the published results must provide improvement criteria over the persistence or references models of its same place. Persistence forecasting is the easier way of prediction in time series, but first order Wiener predictive filter is an enhancement of pure persistence model that have been adopted as the reference model for wind power forecasting. Pure enhanced persistence is simple but hard to beat in short-term prediction. This paper shows some experiments that have been performed by applying the standard protocols with Feed Forward and Recurrent Neural Networks architectures in the background of the requirements for Open Electricity Markets.en_US
dc.languageengen_US
dc.relationTecnicas de Visión Para la Interacción en Entornos de Interior Con Elaboración Mapas Cognitivos en Sistemas Perceptuales Heterogéneos.en_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceCabestany J., Sandoval F., Prieto A., Corchado J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelbergen_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherEnergía eólicaen_US
dc.subject.otherRedes neuronalesen_US
dc.titleExperiments and reference models in training neural networks for short-term wind power forecasting in electricity marketsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.relation.conference10th International Work-Conference on Artificial Neural Networks (IWANN 2009)
dc.relation.conference10th International Work-Conference on Artificial Neural Networks, IWANN 2009
dc.identifier.doi10.1007/978-3-642-02478-8_161
dc.identifier.scopus68749113088-
dc.identifier.isi000270081200161-
dcterms.isPartOfBio-Inspired Systems: Computational And Ambient Intelligence, Pt 1-
dcterms.sourceBio-Inspired Systems: Computational And Ambient Intelligence, Pt 1[ISSN 0302-9743],v. 5517, p. 1288-1295-
dc.contributor.authorscopusid55377382200-
dc.contributor.authorscopusid15042453800-
dc.contributor.authorscopusid7401972145-
dc.contributor.authorscopusid57212239402
dc.description.lastpage1295-
dc.description.firstpage1288-
dc.relation.volume5517-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.wosWOS:000270081200161-
dc.contributor.daisngid726480
dc.contributor.daisngid2527455-
dc.contributor.daisngid34923785
dc.contributor.daisngid1190480-
dc.contributor.daisngid3297402-
dc.identifier.investigatorRIDL-9297-2014-
dc.identifier.eisbn978-3-642-02478-8-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Mendez, J
dc.contributor.wosstandardWOS:Lorenzo, J
dc.contributor.wosstandardWOS:Hernandez, M
dc.date.coverdateAgosto 2009
dc.identifier.conferenceidevents120689
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.principalinvestigatorDomínguez Brito, Antonio Carlos-
crisitem.event.eventsstartdate10-06-2009-
crisitem.event.eventsstartdate10-06-2009-
crisitem.event.eventsenddate12-06-2009-
crisitem.event.eventsenddate12-06-2009-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2628-7639-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.orcid0000-0001-9717-8048-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMéndez Rodríguez,Juan Ángel-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.fullNameHernández Tejera, Francisco Mario-
Colección:Actas de congresos
miniatura
Preprint
Adobe PDF (111,3 kB)
Vista resumida

Citas SCOPUSTM   

2
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 25-feb-2024

Visitas

86
actualizado el 24-feb-2024

Descargas

143
actualizado el 24-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.