Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42866
DC FieldValueLanguage
dc.contributor.authorMendez, Juanen_US
dc.contributor.authorLorenzo, Javieren_US
dc.contributor.authorHernández, Marioen_US
dc.contributor.otherMendez, Juan-
dc.contributor.otherLorenzo-Navarro, Javier-
dc.contributor.otherLorenzo-Navarro, Javier-
dc.date.accessioned2018-11-21T11:27:32Z-
dc.date.available2018-11-21T11:27:32Z-
dc.date.issued2009en_US
dc.identifier.isbn978-3-642-02477-1en_US
dc.identifier.isbn3642024777
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10553/42866-
dc.description.abstractMany published studies in wind power forecasting based on Neural Networks have provided performance factors based on error criteria. Based on the standard protocol for forecasting, the published results must provide improvement criteria over the persistence or references models of its same place. Persistence forecasting is the easier way of prediction in time series, but first order Wiener predictive filter is an enhancement of pure persistence model that have been adopted as the reference model for wind power forecasting. Pure enhanced persistence is simple but hard to beat in short-term prediction. This paper shows some experiments that have been performed by applying the standard protocols with Feed Forward and Recurrent Neural Networks architectures in the background of the requirements for Open Electricity Markets.en_US
dc.languageengen_US
dc.relationTecnicas de Visión Para la Interacción en Entornos de Interior Con Elaboración Mapas Cognitivos en Sistemas Perceptuales Heterogéneos.en_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceCabestany J., Sandoval F., Prieto A., Corchado J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelbergen_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherEnergía eólicaen_US
dc.subject.otherRedes neuronalesen_US
dc.titleExperiments and reference models in training neural networks for short-term wind power forecasting in electricity marketsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.relation.conference10th International Work-Conference on Artificial Neural Networks (IWANN 2009)
dc.relation.conference10th International Work-Conference on Artificial Neural Networks, IWANN 2009
dc.identifier.doi10.1007/978-3-642-02478-8_161
dc.identifier.scopus68749113088-
dc.identifier.isi000270081200161-
dcterms.isPartOfBio-Inspired Systems: Computational And Ambient Intelligence, Pt 1-
dcterms.sourceBio-Inspired Systems: Computational And Ambient Intelligence, Pt 1[ISSN 0302-9743],v. 5517, p. 1288-1295-
dc.contributor.authorscopusid55377382200-
dc.contributor.authorscopusid15042453800-
dc.contributor.authorscopusid7401972145-
dc.contributor.authorscopusid57212239402
dc.description.lastpage1295-
dc.description.firstpage1288-
dc.relation.volume5517-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.wosWOS:000270081200161-
dc.contributor.daisngid726480
dc.contributor.daisngid2527455-
dc.contributor.daisngid34923785
dc.contributor.daisngid1190480-
dc.contributor.daisngid3297402-
dc.identifier.investigatorRIDL-9297-2014-
dc.identifier.eisbn978-3-642-02478-8-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Mendez, J
dc.contributor.wosstandardWOS:Lorenzo, J
dc.contributor.wosstandardWOS:Hernandez, M
dc.date.coverdateAgosto 2009
dc.identifier.conferenceidevents120689
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.principalinvestigatorDomínguez Brito, Antonio Carlos-
crisitem.event.eventsstartdate10-06-2009-
crisitem.event.eventsstartdate10-06-2009-
crisitem.event.eventsenddate12-06-2009-
crisitem.event.eventsenddate12-06-2009-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2628-7639-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.orcid0000-0001-9717-8048-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMéndez Rodríguez,Juan Ángel-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.fullNameHernández Tejera, Francisco Mario-
Appears in Collections:Actas de congresos
Thumbnail
Preprint
Adobe PDF (111,3 kB)
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

2
checked on Feb 25, 2024

Page view(s)

86
checked on Feb 24, 2024

Download(s)

143
checked on Feb 24, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.