Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42753
Title: Positive and nondecreasing solutions to an m-point boundary value problem for nonlinear fractional differential equation
Authors: Cabrera, I. J. 
Harjani, J. 
Sadarangani, K. B. 
UNESCO Clasification: 120215 Ecuaciones integrales
Keywords: Theorems
Issue Date: 2012
Project: Analisis No Lineal y Aplicaciones. 
Journal: Abstract and Applied Analysis 
Abstract: We are concerned with the existence and uniqueness of a positive and nondecreasing solution for the following nonlinear fractional m-point boundary value problem: Dα 0+ u (t) + f (t, u (t)) =0, 0 <t < 1, 2 < α ≤ 3, u(0) = u’(0) = 0, u’ (1) = ∑m−2 i=1 aiu’ (ξi), where Dα 0+ denotes the standard Riemann-Liouville fractional derivative, f : [0, 1] × [0,∞) → [0,∞) is a continuous function, ai ≥ 0 for i = 1, 2, . . . , m − 2, and 0 < ξ1 < ξ2 < · · · < ξm−2 < 1. Our analysis relies on a fixed point theorem in partially ordered sets. Some examples are also presented to illustrate the main results.
URI: http://hdl.handle.net/10553/42753
ISSN: 1085-3375
DOI: 10.1155/2012/826580
Source: Abstract and Applied Analysis [ISSN 1085-3375], v. 2012 (826580)
Appears in Collections:Artículos
Thumbnail
pdf
Adobe PDF (1,85 MB)
Show full item record

SCOPUSTM   
Citations

6
checked on Jul 25, 2021

WEB OF SCIENCETM
Citations

2
checked on Jul 25, 2021

Page view(s)

23
checked on Jun 22, 2021

Download(s)

38
checked on Jun 22, 2021

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.