Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42753
DC FieldValueLanguage
dc.contributor.authorCabrera, I. J.en_US
dc.contributor.authorHarjani, J.en_US
dc.contributor.authorSadarangani, K. B.en_US
dc.contributor.otherHarjani, Jackie-
dc.contributor.otherSadarangani, Kishin-
dc.contributor.otherSadarangani, Kishin-
dc.date.accessioned2018-11-21T10:58:02Z-
dc.date.available2018-11-21T10:58:02Z-
dc.date.issued2012en_US
dc.identifier.issn1085-3375en_US
dc.identifier.urihttp://hdl.handle.net/10553/42753-
dc.description.abstractWe are concerned with the existence and uniqueness of a positive and nondecreasing solution for the following nonlinear fractional m-point boundary value problem: Dα 0+ u (t) + f (t, u (t)) =0, 0 <t < 1, 2 < α ≤ 3, u(0) = u’(0) = 0, u’ (1) = ∑m−2 i=1 aiu’ (ξi), where Dα 0+ denotes the standard Riemann-Liouville fractional derivative, f : [0, 1] × [0,∞) → [0,∞) is a continuous function, ai ≥ 0 for i = 1, 2, . . . , m − 2, and 0 < ξ1 < ξ2 < · · · < ξm−2 < 1. Our analysis relies on a fixed point theorem in partially ordered sets. Some examples are also presented to illustrate the main results.en_US
dc.languageengen_US
dc.relationAnalisis No Lineal y Aplicaciones.en_US
dc.relation.ispartofAbstract and Applied Analysisen_US
dc.sourceAbstract and Applied Analysis [ISSN 1085-3375], v. 2012 (826580)en_US
dc.subject120215 Ecuaciones integralesen_US
dc.subject.otherTheorems
dc.titlePositive and nondecreasing solutions to an m-point boundary value problem for nonlinear fractional differential equationen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1155/2012/826580
dc.identifier.scopus84856509530-
dc.identifier.isi000299441200001-
dcterms.isPartOfAbstract And Applied Analysis-
dcterms.sourceAbstract And Applied Analysis[ISSN 1085-3375]-
dc.contributor.authorscopusid14059653500-
dc.contributor.authorscopusid26032169000-
dc.contributor.authorscopusid55964919000-
dc.identifier.issue826580-
dc.relation.volume2012-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.wosWOS:000299441200001-
dc.contributor.daisngid2610437-
dc.contributor.daisngid1541639-
dc.contributor.daisngid298123-
dc.identifier.investigatorRIDM-2885-2014-
dc.identifier.investigatorRIDNo ID-
dc.identifier.investigatorRIDNo ID-
dc.contributor.wosstandardWOS:Cabrera, IJ
dc.contributor.wosstandardWOS:Harjani, J
dc.contributor.wosstandardWOS:Sadarangani, KB
dc.date.coverdateFebrero 2012
dc.identifier.ulpgces
dc.description.sjr0,723
dc.description.jcr1,102
dc.description.sjrqQ1
dc.description.jcrqQ1
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptAnálisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptAnálisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptAnálisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-3154-6773-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameCabrera Ortega, Ignacio José-
crisitem.author.fullNameHarjani Saúco, Jackie Jerónimo-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Appears in Collections:Artículos
Thumbnail
pdf
Adobe PDF (1,85 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.