Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42753
Title: Positive and nondecreasing solutions to an m-point boundary value problem for nonlinear fractional differential equation
Authors: Cabrera, I. J. 
Harjani, J. 
Sadarangani, K. B. 
UNESCO Clasification: 120215 Ecuaciones integrales
Issue Date: 2012
Project: Analisis No Lineal y Aplicaciones.(Project MTM2007/65706)
Journal: Abstract and Applied Analysis 
Abstract: We are concerned with the existence and uniqueness of a positive and nondecreasing solution for the following nonlinear fractional m-point boundary value problem: Dα 0+ u (t) + f (t, u (t)) =0, 0 <t < 1, 2 < α ≤ 3, u(0) = u’(0) = 0, u’ (1) = ∑m−2 i=1 aiu’ (ξi), where Dα 0+ denotes the standard Riemann-Liouville fractional derivative, f : [0, 1] × [0,∞) → [0,∞) is a continuous function, ai ≥ 0 for i = 1, 2, . . . , m − 2, and 0 < ξ1 < ξ2 < · · · < ξm−2 < 1. Our analysis relies on a fixed point theorem in partially ordered sets. Some examples are also presented to illustrate the main results.
URI: http://hdl.handle.net/10553/42753
ISSN: 1085-3375
DOI: 10.1155/2012/826580
Source: Abstract and Applied Analysis [ISSN 1085-3375], v. 2012 (826580)
Appears in Collections:Artículos

Files in This Item:
File SizeFormat 
positive_nondecreasing_solutions_m.pdf1,85 MBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

5
checked on Dec 7, 2019

WEB OF SCIENCETM
Citations

2
checked on Dec 7, 2019

Page view(s)

15
checked on Dec 7, 2019

Download(s)

7
checked on Dec 7, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.