Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42548
Título: | Combining nearest neighbor predictions and model-based predictions of realized variance: Does it pay? | Autores/as: | Andrada-Félix, Julián Fernández-Rodríguez, Fernando Fuertes, Ana-Maria |
Clasificación UNESCO: | 53 Ciencias económicas | Palabras clave: | Forecast combination Long-memory models Nearest neighbor Non-parametric forecasts Options trading, et al. |
Fecha de publicación: | 2016 | Publicación seriada: | International Journal of Forecasting | Resumen: | The increasing availability of intraday financial data has led to improvements in daily volatility forecasting through the use of long-memory models of realized volatility. This paper demonstrates the merit of the non-parametric nearest neighbor (NN) approach for S&P 100 realized variance forecasting. The NN approach is appealing a priori because, unlike model-based methods, it can reproduce complex dynamic dependencies, while largely avoiding misspecification and parameter estimation uncertainty. We evaluate the forecasts through straddle trading profitability metrics and using conventional statistical accuracy criteria. The ranking of individual forecasts confirms that there is not a one-to-one mapping between statistical accuracy and profitability. In turbulent markets, the NN forecasts lead to higher risk-adjusted profitability levels, even though the model-based forecasts are superior statistically. A directional combination of NN and model-based forecasts is more profitable than any of the individual forecasts, in both calm and turbulent market conditions. | URI: | http://hdl.handle.net/10553/42548 | ISSN: | 0169-2070 | DOI: | 10.1016/j.ijforecast.2015.10.004 | Fuente: | International Journal of Forecasting[ISSN 0169-2070],v. 32, p. 695-715 |
Colección: | Artículos |
Citas SCOPUSTM
7
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
5
actualizado el 17-nov-2024
Visitas
77
actualizado el 22-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.