Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42548
Campo DC Valoridioma
dc.contributor.authorAndrada-Félix, Juliánen_US
dc.contributor.authorFernández-Rodríguez, Fernandoen_US
dc.contributor.authorFuertes, Ana-Mariaen_US
dc.date.accessioned2018-11-20T13:47:07Z-
dc.date.available2018-11-20T13:47:07Z-
dc.date.issued2016en_US
dc.identifier.issn0169-2070en_US
dc.identifier.urihttp://hdl.handle.net/10553/42548-
dc.description.abstractThe increasing availability of intraday financial data has led to improvements in daily volatility forecasting through the use of long-memory models of realized volatility. This paper demonstrates the merit of the non-parametric nearest neighbor (NN) approach for S&P 100 realized variance forecasting. The NN approach is appealing a priori because, unlike model-based methods, it can reproduce complex dynamic dependencies, while largely avoiding misspecification and parameter estimation uncertainty. We evaluate the forecasts through straddle trading profitability metrics and using conventional statistical accuracy criteria. The ranking of individual forecasts confirms that there is not a one-to-one mapping between statistical accuracy and profitability. In turbulent markets, the NN forecasts lead to higher risk-adjusted profitability levels, even though the model-based forecasts are superior statistically. A directional combination of NN and model-based forecasts is more profitable than any of the individual forecasts, in both calm and turbulent market conditions.en_US
dc.languageengen_US
dc.relation.ispartofInternational Journal of Forecastingen_US
dc.sourceInternational Journal of Forecasting[ISSN 0169-2070],v. 32, p. 695-715en_US
dc.subject53 Ciencias económicasen_US
dc.subject.otherForecast combinationen_US
dc.subject.otherLong-memory modelsen_US
dc.subject.otherNearest neighboren_US
dc.subject.otherNon-parametric forecastsen_US
dc.subject.otherOptions tradingen_US
dc.subject.otherRealized volatilityen_US
dc.subject.otherStraddlesen_US
dc.subject.otherVolatility forecastingen_US
dc.titleCombining nearest neighbor predictions and model-based predictions of realized variance: Does it pay?en_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1016/j.ijforecast.2015.10.004
dc.identifier.scopus84960510542-
dc.identifier.isi000378470600008
dc.contributor.authorscopusid6505916889
dc.contributor.authorscopusid6603053452
dc.contributor.authorscopusid7103092338
dc.description.lastpage715-
dc.identifier.issue3-
dc.description.firstpage695-
dc.relation.volume32-
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.contributor.daisngid3014920
dc.contributor.daisngid1514720
dc.contributor.daisngid967688
dc.contributor.wosstandardWOS:Andrada-Felix, J
dc.contributor.wosstandardWOS:Fernandez-Rodriguez, F
dc.contributor.wosstandardWOS:Fuertes, AM
dc.date.coverdateJulio 2016
dc.identifier.ulpgces
dc.description.sjr1,685
dc.description.jcr2,642
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.ssciSSCI
dc.description.erihplusERIH PLUS
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR Finanzas Cuantitativas y Computacionales-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.deptGIR Finanzas Cuantitativas y Computacionales-
crisitem.author.orcid0000-0001-8598-3234-
crisitem.author.orcid0000-0002-8808-9286-
crisitem.author.parentorgDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.parentorgDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.fullNameAndrada Félix, Julián-
crisitem.author.fullNameFernández Rodríguez,Fernando Emilio-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.