Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42493
Título: Bayesian robustness in meta-analysis for studies with zero responses
Autores/as: Vázquez Polo, Francisco José 
Moreno, E.
Negrín, M. A. 
Martel, M. 
Clasificación UNESCO: 530204 Estadística económica
Palabras clave: Bayesian inference
Noninformative priors
Sarmanov and intrinsic link distribution
Testing on meta-parameters
Fecha de publicación: 2016
Proyectos: Nuevos Desarrollos en Métodos Cuantitativos Bayesianos. Aplicaciónes en Evaluación Económica de Tratamientos Mediante Meta-Análisis y Medición de Riesgos Con Datos Actuariales 
MTM2011–28945
Publicación seriada: Pharmaceutical Statistics 
Resumen: Statistical meta-analysis is mostly carried out with the help of the random effect normal model, including the case of discrete random variables. We argue that the normal approximation is not always able to adequately capture the underlying uncertainty of the original discrete data. Furthermore, when we examine the influence of the prior distributions considered, in the presence of rare events, the results from this approximation can be very poor. In order to assess the robustness of the quantities of interest in meta-analysis with respect to the choice of priors, this paper proposes an alternative Bayesian model for binomial random variables with several zero responses. Particular attention is paid to the coherence between the prior distributions of the study model parameters and the meta-parameter. Thus, our method introduces a simple way to examine the sensitivity of these quantities to the structure dependence selected for study. For illustrative purposes, an example with real data is analysed, using the proposed Bayesian meta-analysis model for binomial sparse data.
URI: http://hdl.handle.net/10553/42493
ISSN: 1539-1604
DOI: 10.1002/pst.1741
Fuente: Pharmaceutical Statistics[ISSN 1539-1604],v. 15(3), p. 230-237
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.