Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42405
Título: | Solar radiation forecasting with statistical models | Autores/as: | Mazorra-Aguiar, Luis Díaz, Felipe |
Clasificación UNESCO: | 3322 Tecnología energética | Palabras clave: | Solar Radiation Forecasting Exogenous Data Aerosol Optical Depths (AODs) Time-lagged Images Satellite Pixel |
Fecha de publicación: | 2018 | Editor/a: | Springer | Publicación seriada: | Green Energy and Technology | Resumen: | Renewable energy electrical generation has experienced significant growth in the recent years. Renewable energies generate electrical energy using different natural resources, such as solar radiation and wind fields. These resources present an unstable behavior because they depend on different meteorological conditions. In order to maintain the balance between input and output electrical energy into the power system, grid operators need to control and predict these fluctuating events. Indeed, forecasting methods are completely necessary to increase the proportion of renewable energies into the system (Heinemann et al. in Forecasting of solar radiation: solar energy resource management for electricity generation from local level to global scale. Nova Science Publishers, New York, 2006 [17], Wittmann et al. in IEEE J Sel Top Appl Earth Obs Remote Sens 1: 18-27, 2008 [46]). Reducing the uncertainty of natural resources, operators could reduce maintenance costs, improve the interventions in the intra-day market and optimize management decisions with nonrenewable energies supply. Many forecasting methods are used to obtain solar radiation forecasting for different time horizons. In this chapter, we will focus on several solar radiation forecasting statistical methods for intra-day time horizons using ground and exogenous data as inputs. | URI: | http://hdl.handle.net/10553/42405 | ISBN: | 978-3-319-76875-5 | ISSN: | 1865-3529 | DOI: | 10.1007/978-3-319-76876-2_8 | Fuente: | Wind Field and Solar Radiation Characterization and Forecasting. Green Energy and Technology [ISSN 1865-3529] / Perez Richard (eds), p. 171-200, (Enero 2018) |
Colección: | Capítulo de libro |
Citas SCOPUSTM
6
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
6
actualizado el 15-dic-2024
Visitas
117
actualizado el 23-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.