Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42405
Campo DC Valoridioma
dc.contributor.authorMazorra-Aguiar, Luisen_US
dc.contributor.authorDíaz, Felipeen_US
dc.date.accessioned2018-11-09T11:39:56Z-
dc.date.available2018-11-09T11:39:56Z-
dc.date.issued2018en_US
dc.identifier.isbn978-3-319-76875-5en_US
dc.identifier.issn1865-3529
dc.identifier.urihttp://hdl.handle.net/10553/42405-
dc.description.abstractRenewable energy electrical generation has experienced significant growth in the recent years. Renewable energies generate electrical energy using different natural resources, such as solar radiation and wind fields. These resources present an unstable behavior because they depend on different meteorological conditions. In order to maintain the balance between input and output electrical energy into the power system, grid operators need to control and predict these fluctuating events. Indeed, forecasting methods are completely necessary to increase the proportion of renewable energies into the system (Heinemann et al. in Forecasting of solar radiation: solar energy resource management for electricity generation from local level to global scale. Nova Science Publishers, New York, 2006 [17], Wittmann et al. in IEEE J Sel Top Appl Earth Obs Remote Sens 1: 18-27, 2008 [46]). Reducing the uncertainty of natural resources, operators could reduce maintenance costs, improve the interventions in the intra-day market and optimize management decisions with nonrenewable energies supply. Many forecasting methods are used to obtain solar radiation forecasting for different time horizons. In this chapter, we will focus on several solar radiation forecasting statistical methods for intra-day time horizons using ground and exogenous data as inputs.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.relation.ispartofGreen Energy and Technology
dc.sourceWind Field and Solar Radiation Characterization and Forecasting. Green Energy and Technology [ISSN 1865-3529] / Perez Richard (eds), p. 171-200, (Enero 2018)en_US
dc.subject3322 Tecnología energéticaen_US
dc.subject.otherSolar Radiation Forecastingen_US
dc.subject.otherExogenous Dataen_US
dc.subject.otherAerosol Optical Depths (AODs)en_US
dc.subject.otherTime-lagged Imagesen_US
dc.subject.otherSatellite Pixelen_US
dc.titleSolar radiation forecasting with statistical modelsen_US
dc.typeinfo:eu-repo/semantics/bookParten_US
dc.typeBooken_US
dc.identifier.doi10.1007/978-3-319-76876-2_8en_US
dc.identifier.scopus85045983476-
dc.identifier.isi000441013400009-
dc.contributor.authorscopusid56971482900-
dc.contributor.authorscopusid26429057600-
dc.description.lastpage200en_US
dc.description.firstpage171en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Capítulo de libroen_US
dc.contributor.daisngid28998556-
dc.contributor.daisngid3919769-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Mazorra-Aguiar, L-
dc.contributor.wosstandardWOS:Diaz, F-
dc.date.coverdateEnero 2018en_US
dc.identifier.supplement1865-3529-
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.contributor.buulpgcBU-INGen_US
dc.contributor.buulpgcBU-INGen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,173
dc.description.sjrqQ3
dc.description.spiqQ1
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Eléctrica-
crisitem.author.orcid0000-0002-9746-7461-
crisitem.author.orcid0000-0001-7874-6636-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMazorra Aguiar, Luis-
crisitem.author.fullNameDíaz Reyes, Felipe-
Colección:Capítulo de libro
Vista resumida

Citas SCOPUSTM   

6
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 15-dic-2024

Visitas

117
actualizado el 23-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.