Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/42384
DC FieldValueLanguage
dc.contributor.authorSengar, Namitaen_US
dc.contributor.authorDutta, Malay Kishoreen_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.date.accessioned2018-11-06T12:41:37Z-
dc.date.available2018-11-06T12:41:37Z-
dc.date.issued2018en_US
dc.identifier.issn0010-485Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/42384-
dc.description.abstractThere are different reasons like pests, weeds, and diseases which are responsible for the loss of crop production. Identification and detection of different plant diseases is a difficult task in a large crop field and it also requires an expert manpower. In this paper, the proposed method uses adaptive intensity based thresholding for automatic segmentation of powdery mildew disease which makes this method invariant to image quality and noise. After the segmentation of powdery mildew disease from leaf images, the affected area is quantified which makes this method efficient for grading the level of disease infection. The proposed method is tested on the comprehensive dataset of leaf images of cherry crops, which achieved good accuracy of 99%. The experimental results indicate that proposed method for segmentation of powdery mildew disease affected area from leaf image of cherry crops is convincing and computationally cheap.en_US
dc.languageengen_US
dc.publisher0010-485X
dc.relation.ispartofComputing (Wien. Print)en_US
dc.sourceComputing [ISSN 0010-485X], v. 100 (11), p. 1189-1201en_US
dc.subject220990 Tratamiento digital. Imágenesen_US
dc.subject.otherImage processingen_US
dc.subject.otherPowdery mildewen_US
dc.subject.otherCherryen_US
dc.subject.otherDisease quantificationen_US
dc.titleComputer vision based technique for identification and quantification of powdery mildew disease in cherry leavesen_US
dc.typeinfo:eu-repo/semantics/Articlees
dc.typeArticlees
dc.identifier.doi10.1007/s00607-018-0638-1
dc.identifier.scopus85049087039
dc.identifier.isi000446836200005
dc.contributor.authorscopusid56964145800
dc.contributor.authorscopusid35291803600
dc.contributor.authorscopusid57196462914
dc.description.lastpage1201-
dc.identifier.issue11-
dc.description.firstpage1189-
dc.relation.volume100-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid2084815
dc.contributor.daisngid35026383
dc.contributor.daisngid265761
dc.contributor.wosstandardWOS:Sengar, N
dc.contributor.wosstandardWOS:Dutta, MK
dc.contributor.wosstandardWOS:Travieso, CM
dc.date.coverdateNoviembre 2018
dc.identifier.ulpgces
dc.description.sjr0,416
dc.description.jcr2,063
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

41
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

27
checked on Nov 24, 2024

Page view(s)

42
checked on Jul 13, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.