Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42384
Título: Computer vision based technique for identification and quantification of powdery mildew disease in cherry leaves
Autores/as: Sengar, Namita
Dutta, Malay Kishore
Travieso, Carlos M. 
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
Palabras clave: Image processing
Powdery mildew
Cherry
Disease quantification
Fecha de publicación: 2018
Editor/a: 0010-485X
Publicación seriada: Computing (Wien. Print) 
Resumen: There are different reasons like pests, weeds, and diseases which are responsible for the loss of crop production. Identification and detection of different plant diseases is a difficult task in a large crop field and it also requires an expert manpower. In this paper, the proposed method uses adaptive intensity based thresholding for automatic segmentation of powdery mildew disease which makes this method invariant to image quality and noise. After the segmentation of powdery mildew disease from leaf images, the affected area is quantified which makes this method efficient for grading the level of disease infection. The proposed method is tested on the comprehensive dataset of leaf images of cherry crops, which achieved good accuracy of 99%. The experimental results indicate that proposed method for segmentation of powdery mildew disease affected area from leaf image of cherry crops is convincing and computationally cheap.
URI: http://hdl.handle.net/10553/42384
ISSN: 0010-485X
DOI: 10.1007/s00607-018-0638-1
Fuente: Computing [ISSN 0010-485X], v. 100 (11), p. 1189-1201
Colección:Artículos
Vista completa

Citas SCOPUSTM   

41
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

27
actualizado el 24-nov-2024

Visitas

42
actualizado el 13-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.