Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/42028
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cornejo-Bueno, L. | en_US |
dc.contributor.author | Nieto-Borge, J.C. | en_US |
dc.contributor.author | García-Díaz, P. | en_US |
dc.contributor.author | Rodríguez, G. | en_US |
dc.contributor.author | Salcedo-Sanz, S. | en_US |
dc.date.accessioned | 2018-09-28T14:42:58Z | - |
dc.date.available | 2018-09-28T14:42:58Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.issn | 0960-1481 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/42028 | - |
dc.description.abstract | This paper proposes a novel hybrid approach for feature selection in two different relevant problems for marine energy applications: significant wave height (. Hm0) and wave energy flux (P) prediction. Specifically, a hybrid Grouping Genetic Algorithm - Extreme Learning Machine approach (GGA-ELM) is proposed, in such a way that the GGA searches for several subsets of features, and the ELM provides the fitness of the algorithm, by means of its accuracy on Hm0 or P prediction. Since the GGA was specifically created for problems involving a number of groups, the proposed algorithm may be used to evolve different groups of features in parallel, which may improve the performance of the predictions obtained. After the feature selection process with the GGA-ELM, the final results are given by an ELM and also by a Support Vector Machine, both working on the best GGA groups obtained. The performance of the proposed system has been tested in a real problem of Hm0 and P prediction at the Western coast of the USA, obtaining good results. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Renewable Energy | en_US |
dc.source | Renewable Energy[ISSN 0960-1481],v. 97, p. 380-389 | en_US |
dc.subject | 2510 Oceanografía | en_US |
dc.subject.other | Extreme Learning Machines | en_US |
dc.subject.other | Grouping genetic algorithm (GGA) | en_US |
dc.subject.other | Marine energy | en_US |
dc.subject.other | Significant wave height | en_US |
dc.subject.other | Support vector machines | en_US |
dc.subject.other | Wave energy flux | en_US |
dc.title | Significant wave height and energy flux prediction for marine energy applications: A grouping genetic algorithm - Extreme Learning Machine approach | en_US |
dc.type | info:eu-repo/semantics/Article | es |
dc.type | Article | es |
dc.identifier.doi | 10.1016/j.renene.2016.05.094 | |
dc.identifier.scopus | 84973131094 | - |
dc.identifier.isi | 000380600500035 | - |
dc.contributor.authorscopusid | 56732912600 | |
dc.contributor.authorscopusid | 55663344400 | |
dc.contributor.authorscopusid | 12790265900 | |
dc.contributor.authorscopusid | 7203006681 | |
dc.contributor.authorscopusid | 12789591800 | |
dc.description.lastpage | 389 | - |
dc.description.firstpage | 380 | - |
dc.relation.volume | 97 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 3139230 | |
dc.contributor.daisngid | 1867514 | |
dc.contributor.daisngid | 5122163 | |
dc.contributor.daisngid | 28190193 | |
dc.contributor.daisngid | 140631 | |
dc.contributor.wosstandard | WOS:Cornejo-Bueno, L | |
dc.contributor.wosstandard | WOS:Nieto-Borge, JC | |
dc.contributor.wosstandard | WOS:Garcia-Diaz, P | |
dc.contributor.wosstandard | WOS:Rodriguez, G | |
dc.contributor.wosstandard | WOS:Salcedo-Sanz, S | |
dc.date.coverdate | Noviembre 2016 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 1,697 | |
dc.description.jcr | 4,357 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IUNAT: Física marina y teledetección aplicada | - |
crisitem.author.dept | IU de Estudios Ambientales y Recursos Naturales | - |
crisitem.author.dept | Departamento de Física | - |
crisitem.author.parentorg | IU de Estudios Ambientales y Recursos Naturales | - |
crisitem.author.fullName | Rodríguez Rodríguez, Germán Alejandro | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
87
checked on Nov 17, 2024
WEB OF SCIENCETM
Citations
78
checked on Nov 17, 2024
Page view(s)
118
checked on Nov 1, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.