Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42028
Título: Significant wave height and energy flux prediction for marine energy applications: A grouping genetic algorithm - Extreme Learning Machine approach
Autores/as: Cornejo-Bueno, L.
Nieto-Borge, J.C.
García-Díaz, P.
Rodríguez, G. 
Salcedo-Sanz, S.
Clasificación UNESCO: 2510 Oceanografía
Palabras clave: Extreme Learning Machines
Grouping genetic algorithm (GGA)
Marine energy
Significant wave height
Support vector machines, et al.
Fecha de publicación: 2016
Publicación seriada: Renewable Energy 
Resumen: This paper proposes a novel hybrid approach for feature selection in two different relevant problems for marine energy applications: significant wave height (. Hm0) and wave energy flux (P) prediction. Specifically, a hybrid Grouping Genetic Algorithm - Extreme Learning Machine approach (GGA-ELM) is proposed, in such a way that the GGA searches for several subsets of features, and the ELM provides the fitness of the algorithm, by means of its accuracy on Hm0 or P prediction. Since the GGA was specifically created for problems involving a number of groups, the proposed algorithm may be used to evolve different groups of features in parallel, which may improve the performance of the predictions obtained. After the feature selection process with the GGA-ELM, the final results are given by an ELM and also by a Support Vector Machine, both working on the best GGA groups obtained. The performance of the proposed system has been tested in a real problem of Hm0 and P prediction at the Western coast of the USA, obtaining good results.
URI: http://hdl.handle.net/10553/42028
ISSN: 0960-1481
DOI: 10.1016/j.renene.2016.05.094
Fuente: Renewable Energy[ISSN 0960-1481],v. 97, p. 380-389
Colección:Artículos
Vista completa

Citas SCOPUSTM   

87
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

78
actualizado el 17-nov-2024

Visitas

118
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.