Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/41931
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aguiar, L. Mazorra | en_US |
dc.contributor.author | Pereira, B | en_US |
dc.contributor.author | Lauret, P. | en_US |
dc.contributor.author | Díaz, F. | en_US |
dc.contributor.author | David, M. | en_US |
dc.contributor.other | Diaz, Felipe | |
dc.contributor.other | MAZORRA AGUIAR, LUIS | |
dc.date.accessioned | 2018-09-13T17:28:10Z | - |
dc.date.available | 2018-09-13T17:28:10Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.issn | 0960-1481 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/41931 | - |
dc.description.abstract | Isolated power systems need to generate all the electricity demand with their own renewable resources. Among the latter, solar energy may account for a large share. However, solar energy is a fluctuating source and the island power grid could present an unstable behavior with a high solar penetration. Global Horizontal Solar Irradiance (GHI) forecasting is an important issue to increase solar energy production into electric power system. This study is focused in hourly GHI forecasting from 1 to 6 h ahead. Several statistical models have been successfully tested in GHI forecasting, such us autoregressive (AR), autoregressive moving average (ARMA) and Artificial Neural Networks (ANN). In this paper, ANN models are designed to produce intra-day solar forecasts using ground and exogenous data. Ground data were obtained from two measurement stations in Gran Canaria Island. In order to improve the results obtained with ground data, satellite GHI data (from Helioclim-3) as well as solar radiation and Total Cloud Cover forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) are used as additional inputs of the ANN model. It is shown that combining exogenous data (satellite and ECMWF forecasts) with ground data further improves the accuracy of the intra-day forecasts. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Renewable Energy | en_US |
dc.source | Renewable Energy[ISSN 0960-1481],v. 97, p. 599-610 | en_US |
dc.subject | 210601 Energía solar | en_US |
dc.subject | 3322 Tecnología energética | en_US |
dc.subject | 250121 Simulación numérica | en_US |
dc.subject.other | Artificial neural networks | en_US |
dc.subject.other | Numerical weather prediction | en_US |
dc.subject.other | Satellite images | en_US |
dc.subject.other | Solar forecasting | en_US |
dc.title | Combining solar irradiance measurements, satellite-derived data and a numerical weather prediction model to improve intra-day solar forecasting | en_US |
dc.type | info:eu-repo/semantics/Article | es |
dc.type | Article | es |
dc.identifier.doi | 10.1016/j.renene.2016.06.018 | |
dc.identifier.scopus | 84974717477 | - |
dc.identifier.isi | 000380600500054 | |
dcterms.isPartOf | Renewable Energy | |
dcterms.source | Renewable Energy[ISSN 0960-1481],v. 97, p. 599-610 | |
dc.contributor.authorscopusid | 56971482900 | |
dc.contributor.authorscopusid | 56970705800 | |
dc.contributor.authorscopusid | 7004327525 | |
dc.contributor.authorscopusid | 26429057600 | |
dc.contributor.authorscopusid | 35486904800 | |
dc.description.lastpage | 610 | - |
dc.description.firstpage | 599 | - |
dc.relation.volume | 97 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.identifier.wos | WOS:000380600500054 | - |
dc.contributor.daisngid | 3785154 | |
dc.contributor.daisngid | 30889953 | |
dc.contributor.daisngid | 6874850 | |
dc.contributor.daisngid | 1136985 | |
dc.contributor.daisngid | 3919769 | |
dc.contributor.daisngid | 1403275 | |
dc.identifier.investigatorRID | L-1074-2014 | |
dc.identifier.investigatorRID | K-4255-2017 | |
dc.contributor.wosstandard | WOS:Aguiar, LM | |
dc.contributor.wosstandard | WOS:Pereira, B | |
dc.contributor.wosstandard | WOS:Lauret, P | |
dc.contributor.wosstandard | WOS:Diaz, F | |
dc.contributor.wosstandard | WOS:David, M | |
dc.date.coverdate | Noviembre 2016 | |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 1,697 | |
dc.description.jcr | 4,357 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR SIANI: Modelización y Simulación Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Ingeniería Eléctrica | - |
crisitem.author.orcid | 0000-0002-9746-7461 | - |
crisitem.author.orcid | 0000-0001-7874-6636 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Mazorra Aguiar, Luis | - |
crisitem.author.fullName | Díaz Reyes, Felipe | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
120
checked on Nov 17, 2024
WEB OF SCIENCETM
Citations
108
checked on Nov 17, 2024
Page view(s)
37
checked on Mar 16, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.