Identificador persistente para citar o vincular este elemento:
				https://accedacris.ulpgc.es/jspui/handle/10553/41931
			
		| Título: | Combining solar irradiance measurements, satellite-derived data and a numerical weather prediction model to improve intra-day solar forecasting | Autores/as: | Aguiar, L. Mazorra Pereira, B Lauret, P. Díaz, F. David, M. | Clasificación UNESCO: | 210601 Energía solar 3322 Tecnología energética 250121 Simulación numérica | Palabras clave: | Artificial neural networks Numerical weather prediction Satellite images Solar forecasting | Fecha de publicación: | 2016 | Publicación seriada: | Renewable Energy | Resumen: | Isolated power systems need to generate all the electricity demand with their own renewable resources. Among the latter, solar energy may account for a large share. However, solar energy is a fluctuating source and the island power grid could present an unstable behavior with a high solar penetration. Global Horizontal Solar Irradiance (GHI) forecasting is an important issue to increase solar energy production into electric power system. This study is focused in hourly GHI forecasting from 1 to 6 h ahead. Several statistical models have been successfully tested in GHI forecasting, such us autoregressive (AR), autoregressive moving average (ARMA) and Artificial Neural Networks (ANN). In this paper, ANN models are designed to produce intra-day solar forecasts using ground and exogenous data. Ground data were obtained from two measurement stations in Gran Canaria Island. In order to improve the results obtained with ground data, satellite GHI data (from Helioclim-3) as well as solar radiation and Total Cloud Cover forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) are used as additional inputs of the ANN model. It is shown that combining exogenous data (satellite and ECMWF forecasts) with ground data further improves the accuracy of the intra-day forecasts. | URI: | https://accedacris.ulpgc.es/handle/10553/41931 | ISSN: | 0960-1481 | DOI: | 10.1016/j.renene.2016.06.018 | Fuente: | Renewable Energy[ISSN 0960-1481],v. 97, p. 599-610 | 
| Colección: | Artículos | 
Citas SCOPUSTM   
 
										
									
									
		
			
				
					
						128
					
					
				
			
			
		
		
								
										actualizado el 08-jun-2025
									
								Citas de WEB OF SCIENCETM
 Citations
										
									
									
		
			
				
					
						112
					
					
				
			
			
		
		
								
										actualizado el 08-jun-2025
									
								Visitas
37
										actualizado el 16-mar-2024
									
								Google ScholarTM
							Verifica
						Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.