Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/41931
Título: | Combining solar irradiance measurements, satellite-derived data and a numerical weather prediction model to improve intra-day solar forecasting | Autores/as: | Aguiar, L. Mazorra Pereira, B Lauret, P. Díaz, F. David, M. |
Clasificación UNESCO: | 210601 Energía solar 3322 Tecnología energética 250121 Simulación numérica |
Palabras clave: | Artificial neural networks Numerical weather prediction Satellite images Solar forecasting |
Fecha de publicación: | 2016 | Publicación seriada: | Renewable Energy | Resumen: | Isolated power systems need to generate all the electricity demand with their own renewable resources. Among the latter, solar energy may account for a large share. However, solar energy is a fluctuating source and the island power grid could present an unstable behavior with a high solar penetration. Global Horizontal Solar Irradiance (GHI) forecasting is an important issue to increase solar energy production into electric power system. This study is focused in hourly GHI forecasting from 1 to 6 h ahead. Several statistical models have been successfully tested in GHI forecasting, such us autoregressive (AR), autoregressive moving average (ARMA) and Artificial Neural Networks (ANN). In this paper, ANN models are designed to produce intra-day solar forecasts using ground and exogenous data. Ground data were obtained from two measurement stations in Gran Canaria Island. In order to improve the results obtained with ground data, satellite GHI data (from Helioclim-3) as well as solar radiation and Total Cloud Cover forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) are used as additional inputs of the ANN model. It is shown that combining exogenous data (satellite and ECMWF forecasts) with ground data further improves the accuracy of the intra-day forecasts. | URI: | http://hdl.handle.net/10553/41931 | ISSN: | 0960-1481 | DOI: | 10.1016/j.renene.2016.06.018 | Fuente: | Renewable Energy[ISSN 0960-1481],v. 97, p. 599-610 |
Colección: | Artículos |
Citas SCOPUSTM
120
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
108
actualizado el 17-nov-2024
Visitas
37
actualizado el 16-mar-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.