Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/41536
Título: Optimization of sleep apnea detection using SpO2 and ANN
Autores/as: Mostafa, Sheikh Shanawaz
Carvalho, Joao Paulo
Morgado-Dias, Fernando
Ravelo-García, Antonio 
Clasificación UNESCO: 32 Ciencias médicas
Palabras clave: Classification
Feature Section
Sleep Apnea
SpO2
Fecha de publicación: 2017
Conferencia: 26th International Conference on Information, Communication and Automation Technologies, ICAT 2017 
Resumen: Repetitive respiratory disturbance during sleep is called Sleep Apnea Hypopnea Syndrome and causes various diseases. Different features and classifiers have been used by different researchers to detect sleep apnea. This study is undertaken to identify the better performing blood oxygen saturation features subset using an Artificial Neural Network classifier for sleep Apnea detection. A database of 8 subjects with one-minute annotation is used to test the proposed system. The optimized system has seven features chosen from a total set of sixty-one features presenting a high accuracy rate using a genetic algorithm. Artificial Neural Network was able to achieve 97.7 percentage of accuracy with only seven features chosen by the Genetic algorithm.
URI: http://hdl.handle.net/10553/41536
ISBN: 9781538633373
DOI: 10.1109/ICAT.2017.8171609
Fuente: 2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT), Sarajevo, pp. 1-6; Electronic ISBN: 978-1-5386-3337-3
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

28
actualizado el 08-dic-2024

Visitas

113
actualizado el 12-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.