Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/41536
Campo DC Valoridioma
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorCarvalho, Joao Pauloen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorRavelo-García, Antonioen_US
dc.date.accessioned2018-07-11T12:17:27Z-
dc.date.available2018-07-11T12:17:27Z-
dc.date.issued2017en_US
dc.identifier.isbn9781538633373
dc.identifier.urihttp://hdl.handle.net/10553/41536-
dc.description.abstractRepetitive respiratory disturbance during sleep is called Sleep Apnea Hypopnea Syndrome and causes various diseases. Different features and classifiers have been used by different researchers to detect sleep apnea. This study is undertaken to identify the better performing blood oxygen saturation features subset using an Artificial Neural Network classifier for sleep Apnea detection. A database of 8 subjects with one-minute annotation is used to test the proposed system. The optimized system has seven features chosen from a total set of sixty-one features presenting a high accuracy rate using a genetic algorithm. Artificial Neural Network was able to achieve 97.7 percentage of accuracy with only seven features chosen by the Genetic algorithm.en_US
dc.languageengen_US
dc.source2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT), Sarajevo, pp. 1-6; Electronic ISBN: 978-1-5386-3337-3en_US
dc.subject32 Ciencias médicasen_US
dc.subject.otherClassificationen_US
dc.subject.otherFeature Sectionen_US
dc.subject.otherSleep Apneaen_US
dc.subject.otherSpO2en_US
dc.titleOptimization of sleep apnea detection using SpO2 and ANNen_US
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.typeConferenceObjectes
dc.relation.conference26th International Conference on Information, Communication and Automation Technologies, ICAT 2017
dc.identifier.doi10.1109/ICAT.2017.8171609
dc.identifier.scopus85046804987
dc.contributor.authorscopusid55489640900
dc.contributor.authorscopusid7202738810
dc.contributor.authorscopusid57200602527
dc.contributor.authorscopusid9634135600
dc.description.lastpage6-
dc.description.firstpage1-
dc.investigacionCiencias de la Saluden_US
dc.type2Actas de congresosen_US
dc.date.coverdateDiciembre 2017
dc.identifier.conferenceidevents121628
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
crisitem.event.eventsstartdate26-10-2017-
crisitem.event.eventsenddate28-10-2017-
Colección:Actas de congresos
Vista resumida

Citas SCOPUSTM   

28
actualizado el 08-dic-2024

Visitas

113
actualizado el 12-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.