Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/41536
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mostafa, Sheikh Shanawaz | en_US |
dc.contributor.author | Carvalho, Joao Paulo | en_US |
dc.contributor.author | Morgado-Dias, Fernando | en_US |
dc.contributor.author | Ravelo-García, Antonio | en_US |
dc.date.accessioned | 2018-07-11T12:17:27Z | - |
dc.date.available | 2018-07-11T12:17:27Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.isbn | 9781538633373 | |
dc.identifier.uri | http://hdl.handle.net/10553/41536 | - |
dc.description.abstract | Repetitive respiratory disturbance during sleep is called Sleep Apnea Hypopnea Syndrome and causes various diseases. Different features and classifiers have been used by different researchers to detect sleep apnea. This study is undertaken to identify the better performing blood oxygen saturation features subset using an Artificial Neural Network classifier for sleep Apnea detection. A database of 8 subjects with one-minute annotation is used to test the proposed system. The optimized system has seven features chosen from a total set of sixty-one features presenting a high accuracy rate using a genetic algorithm. Artificial Neural Network was able to achieve 97.7 percentage of accuracy with only seven features chosen by the Genetic algorithm. | en_US |
dc.language | eng | en_US |
dc.source | 2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT), Sarajevo, pp. 1-6; Electronic ISBN: 978-1-5386-3337-3 | en_US |
dc.subject | 32 Ciencias médicas | en_US |
dc.subject.other | Classification | en_US |
dc.subject.other | Feature Section | en_US |
dc.subject.other | Sleep Apnea | en_US |
dc.subject.other | SpO2 | en_US |
dc.title | Optimization of sleep apnea detection using SpO2 and ANN | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dc.type | ConferenceObject | es |
dc.relation.conference | 26th International Conference on Information, Communication and Automation Technologies, ICAT 2017 | |
dc.identifier.doi | 10.1109/ICAT.2017.8171609 | |
dc.identifier.scopus | 85046804987 | |
dc.contributor.authorscopusid | 55489640900 | |
dc.contributor.authorscopusid | 7202738810 | |
dc.contributor.authorscopusid | 57200602527 | |
dc.contributor.authorscopusid | 9634135600 | |
dc.description.lastpage | 6 | - |
dc.description.firstpage | 1 | - |
dc.investigacion | Ciencias de la Salud | en_US |
dc.type2 | Actas de congresos | en_US |
dc.date.coverdate | Diciembre 2017 | |
dc.identifier.conferenceid | events121628 | |
dc.identifier.ulpgc | Sí | es |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 26-10-2017 | - |
crisitem.event.eventsenddate | 28-10-2017 | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-8512-965X | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Ravelo García, Antonio Gabriel | - |
Appears in Collections: | Actas de congresos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.