Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/41423
Título: Consumer visual appraisal and shelf life of leg chops from suckling kids raised with natural milk or milk replacer
Autores/as: Ripoll, Guillermo
Alcalde, María J.
Argüello, Anastasio 
Córdoba, María G.
Panea, Begoña
Clasificación UNESCO: 3109 Ciencias veterinarias
Palabras clave: Rearing system
Survival analysis
Color
Machine learning
Muscles, et al.
Fecha de publicación: 2018
Publicación seriada: Journal of the Science of Food and Agriculture 
Resumen: BACKGROUND: The use of milk replacers to feed suckling kids could affect the shelf life and appearance of the meat. Leg chops were evaluated by consumers and the instrumental color was measured. A machine learning algorithm was used to relate them. The aim of this experiment was to study the shelf life of the meat of kids reared with dam's milk or milk replacers and to ascertain which illuminant and instrumental color variables are used by consumers as criteria to evaluate that visual appraisal. RESULTS: Meat from kids reared with milk replacers was more valuable and had a longer shelf life than meat from kids reared with natural milk. Consumers used the color of the whole surface of the leg chop to assess the appearance of meat. Lightness and hue angle were the prime cues used to evaluate the appearance of meat. CONCLUSION: Illuminant D65 was more useful for relating the visual appraisal with the instrumental color using a machine learning algorithm. The machine learning algorithms showed that the underlying rules used by consumers to evaluate the appearance of suckling kid meat are not at all linear and can be computationally schematized into a simple algorithm.
URI: http://hdl.handle.net/10553/41423
ISSN: 0022-5142
DOI: 10.1002/jsfa.8758
Fuente: Journal of the Science of Food and Agriculture[ISSN 0022-5142],v. 98, p. 2651-2657
Colección:Artículos
Vista completa

Citas SCOPUSTM   

10
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

10
actualizado el 24-nov-2024

Visitas

58
actualizado el 29-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.