Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/37786
Título: Multiple generation of Bengali static signatures
Autores/as: Diaz, Moises 
Chanda, S.
Ferrer, Miguel A. 
Banerjee, C. K.
Majumdar, A.
Carmona-Duarte, Cristina 
Acharya, P.
Pal, U.
Clasificación UNESCO: 330405 Sistemas de reconocimiento de caracteres
Palabras clave: Document analysis
Handwriting signatures
Off-line signatures
Synthetic signatures
Fecha de publicación: 2017
Publicación seriada: Proceedings of International Conference on Frontiers in Handwriting Recognition, ICFHR
Conferencia: 15th International Conference on Frontiers in Handwriting Recognition, ICFHR 2016 
Resumen: Handwritten signature datasets are really necessary for the purpose of developing and training automatic signature verification systems. It is desired that all samples in a signature dataset should exhibit both inter-personal and intra-personal variability. A possibility to model this reality seems to be obtained through the synthesis of signatures. In this paper we propose a method based on motor equivalence model theory to generate static Bengali signatures. This theory divides the human action to write mainly into cognitive and motor levels. Due to difference between scripts, we have redesigned our previous synthesizer [1,2], which generates static Western signatures. The experiments assess whether this method can approach the intra and inter-personal variability of the Bengali-100 Static Signature DB from a performance-based validation. The similarities reported in the experimental results proof the ability of the synthesizer to generate signature images in this script. � 2016 IEEE
URI: http://hdl.handle.net/10553/37786
ISBN: 9781509009817
ISSN: 2167-6445
DOI: 10.1109/ICFHR.2016.0021
Fuente: Proceedings of International Conference on Frontiers in Handwriting Recognition, ICFHR[ISSN 2167-6445],v. 0 (7814037), p. 42-47
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.