Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/37175
Título: Approaching the intra-class variability in multi-script static signature evaluation
Autores/as: Diaz, Moises 
Ferrer, Miguel A. 
Sabourin, Robert
Clasificación UNESCO: 120304 Inteligencia artificial
3307 Tecnología electrónica
Palabras clave: Verification
Recognition
Mechanisms
Online
Art
Fecha de publicación: 2016
Editor/a: Institute of Electrical and Electronics Engineers (IEEE) 
Publicación seriada: Proceedings - International Conference on Pattern Recognition 
Conferencia: 23rd International Conference on Pattern Recognition, ICPR 2016 
Resumen: As an emerging issue, multi-script signature verification is a recent challenge for current Automatic Signature Verification (ASV) systems. Relevant differences are presented in the morphology and lexicon of the signature images written in different scripts, such as used symbols, shape of the signatures, legibility, etc. These peculiarities could reduce the success of ASV systems, especially those which were originally designed for only one kind of script. However, one common feature among scripts in ASV is the fact that the greater the number of signatures that are used for training, the better the expected performance. In this work, we propose a method inspired by observations from the neuromotor equivalence theory to artificially enlarge the signature images used to train a state-of-the-art static signature classifier. Experimental results are obtained by using three static signature datasets derived from completely different scripts: Western, Bengali and Devanagari. Our results suggest that the cognitive-inspired model, which aims to duplicate static signatures, tends toward intra-class variability of signatures written in different scripts; the model's beneficial impact is seen in signature verification tests.
URI: http://hdl.handle.net/10553/37175
ISBN: 978-1-5090-4847-2
ISSN: 1051-4651
DOI: 10.1109/ICPR.2016.7899791
Fuente: Proceedings - International Conference on Pattern Recognition [ISSN 1051-4651], v. 0 (7899791), p. 1147-1152
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

20
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

9
actualizado el 25-abr-2021

Visitas

81
actualizado el 07-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.