Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/37091
Título: | Temperature control by its forecasting applying score fusion for sustainable development | Autores/as: | Hernández-Travieso, José Gustavo Herrera-Jiménez, Antonio L. Travieso-González, Carlos M. Morgado-Dias, F. Alonso-Hernández, Jesús B. Ravelo-García, Antonio G. |
Clasificación UNESCO: | 3308 Ingeniería y tecnología del medio ambiente | Palabras clave: | Temperature forecasting Sustainable development Artificial neural network Score fusion Prediction system |
Fecha de publicación: | 2017 | Publicación seriada: | Sustainability (Switzerland) | Resumen: | Temperature control and its prediction has turned into a research challenge for the knowledge of the planet and its effects on different human activities and this will assure, in conjunction with energy efficiency, a sustainable development reducing CO2 emissions and fuel consumption. This work tries to offer a practical solution to temperature forecast and control, which has been traditionally carried out by specialized institutes. For the accomplishment of temperature estimation, a score fusion block based on Artificial Neural Networks was used. The dataset is composed by data from a meteorological station, using 20,000 temperature values and 10,000 samples of several meteorological parameters. Thus, the complexity of the traditional forecasting models is resolved. As a result, a practical system has been obtained, reaching a mean squared error of 0.136 degrees C for short period of time prediction and 5 degrees C for large period of time prediction. | URI: | http://hdl.handle.net/10553/37091 | ISSN: | 2071-1050 | DOI: | 10.3390/su9020193 | Fuente: | Sustainability (Switzerland) [ISSN 2071-1050],v. 9 (2), 193 |
Colección: | Artículos |
Citas SCOPUSTM
3
actualizado el 16-feb-2025
Citas de WEB OF SCIENCETM
Citations
3
actualizado el 16-feb-2025
Visitas
84
actualizado el 04-may-2024
Descargas
111
actualizado el 04-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.