Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/37091
Título: Temperature control by its forecasting applying score fusion for sustainable development
Autores/as: Hernández-Travieso, José Gustavo
Herrera-Jiménez, Antonio L.
Travieso-González, Carlos M. 
Morgado-Dias, F.
Alonso-Hernández, Jesús B. 
Ravelo-García, Antonio G. 
Clasificación UNESCO: 3308 Ingeniería y tecnología del medio ambiente
Palabras clave: Temperature forecasting
Sustainable development
Artificial neural network
Score fusion
Prediction system
Fecha de publicación: 2017
Publicación seriada: Sustainability (Switzerland) 
Resumen: Temperature control and its prediction has turned into a research challenge for the knowledge of the planet and its effects on different human activities and this will assure, in conjunction with energy efficiency, a sustainable development reducing CO2 emissions and fuel consumption. This work tries to offer a practical solution to temperature forecast and control, which has been traditionally carried out by specialized institutes. For the accomplishment of temperature estimation, a score fusion block based on Artificial Neural Networks was used. The dataset is composed by data from a meteorological station, using 20,000 temperature values and 10,000 samples of several meteorological parameters. Thus, the complexity of the traditional forecasting models is resolved. As a result, a practical system has been obtained, reaching a mean squared error of 0.136 degrees C for short period of time prediction and 5 degrees C for large period of time prediction.
URI: http://hdl.handle.net/10553/37091
ISSN: 2071-1050
DOI: 10.3390/su9020193
Fuente: Sustainability (Switzerland) [ISSN 2071-1050],v. 9 (2), 193
Colección:Artículos
miniatura
Adobe PDF (1,58 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.