Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/20250
Título: | Automatic taxonomic classification of fish based on their acoustic signals | Autores/as: | Noda, Juan J. Travieso-González, Carlos M. Sánchez-Rodríguez, David |
Clasificación UNESCO: | 2401 Biología animal (zoología) | Palabras clave: | Biological acoustic analysis Bioacoustic taxonomy identification Fish acoustic signal Hydroacoustic sensors Species mapping |
Fecha de publicación: | 2016 | Publicación seriada: | Applied Sciences (Basel) | Resumen: | Fish as well as birds, mammals, insects and other animals are capable of emitting sounds for diverse purposes, which can be recorded through microphone sensors. Although fish vocalizations have been known for a long time, they have been poorly studied and applied in their taxonomic classification. This work presents a novel approach for automatic remote acoustic identification of fish through their acoustic signals by applying pattern recognition techniques. The sound signals are preprocessed and automatically segmented to extract each call from the background noise. Then, the calls are parameterized using Linear and Mel Frequency Cepstral Coefficients (LFCC and MFCC), Shannon Entropy (SE) and Syllable Length (SL), yielding useful information for the classification phase. In our experiments, 102 different fish species have been successfully identified with three widely used machine learning algorithms: K-Nearest Neighbors (KNN), Random Forest (RF) and Support Vector Machine (SVM). Experimental results show an average classification accuracy of 95.24%, 93.56% and 95.58%, respectively. | URI: | http://hdl.handle.net/10553/20250 | ISSN: | 2076-3417 | DOI: | 10.3390/app6120443 | Fuente: | Applied Sciences Basel [ISSN 2076-3417], v. 6 (12), p. 443 | Derechos: | by |
Colección: | Artículos |
Citas SCOPUSTM
32
actualizado el 05-ene-2025
Citas de WEB OF SCIENCETM
Citations
25
actualizado el 05-ene-2025
Visitas
68
actualizado el 13-abr-2024
Descargas
183
actualizado el 13-abr-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.