Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/20250
Título: Automatic taxonomic classification of fish based on their acoustic signals
Autores/as: Noda, Juan J.
Travieso-González, Carlos M. 
Sánchez-Rodríguez, David 
Clasificación UNESCO: 2401 Biología animal (zoología)
Palabras clave: Biological acoustic analysis
Bioacoustic taxonomy identification
Fish acoustic signal
Hydroacoustic sensors
Species mapping
Fecha de publicación: 2016
Publicación seriada: Applied Sciences (Basel) 
Resumen: Fish as well as birds, mammals, insects and other animals are capable of emitting sounds for diverse purposes, which can be recorded through microphone sensors. Although fish vocalizations have been known for a long time, they have been poorly studied and applied in their taxonomic classification. This work presents a novel approach for automatic remote acoustic identification of fish through their acoustic signals by applying pattern recognition techniques. The sound signals are preprocessed and automatically segmented to extract each call from the background noise. Then, the calls are parameterized using Linear and Mel Frequency Cepstral Coefficients (LFCC and MFCC), Shannon Entropy (SE) and Syllable Length (SL), yielding useful information for the classification phase. In our experiments, 102 different fish species have been successfully identified with three widely used machine learning algorithms: K-Nearest Neighbors (KNN), Random Forest (RF) and Support Vector Machine (SVM). Experimental results show an average classification accuracy of 95.24%, 93.56% and 95.58%, respectively.
URI: http://hdl.handle.net/10553/20250
ISSN: 2076-3417
DOI: 10.3390/app6120443
Fuente: Applied Sciences Basel [ISSN 2076-3417], v. 6 (12), p. 443
Derechos: by
Colección:Artículos
XML (29,18 kB)
Text (2,11 kB)
miniatura
Adobe PDF (6,25 MB)
miniatura
Adobe PDF (6,25 MB)
Vista completa

Citas SCOPUSTM   

32
actualizado el 05-ene-2025

Citas de WEB OF SCIENCETM
Citations

25
actualizado el 05-ene-2025

Visitas

68
actualizado el 13-abr-2024

Descargas

183
actualizado el 13-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.