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Abstract: Fish as well as birds, mammals, insects and other animals are capable of emitting sounds for
diverse purposes, which can be recorded through microphone sensors. Although fish vocalizations
have been known for a long time, they have been poorly studied and applied in their taxonomic
classification. This work presents a novel approach for automatic remote acoustic identification of
fish through their acoustic signals by applying pattern recognition techniques. The sound signals are
preprocessed and automatically segmented to extract each call from the background noise. Then, the
calls are parameterized using Linear and Mel Frequency Cepstral Coefficients (LFCC and MFCC),
Shannon Entropy (SE) and Syllable Length (SL), yielding useful information for the classification
phase. In our experiments, 102 different fish species have been successfully identified with three
widely used machine learning algorithms: K-Nearest Neighbors (KNN), Random Forest (RF) and
Support Vector Machine (SVM). Experimental results show an average classification accuracy of
95.24%, 93.56% and 95.58%, respectively.

Keywords: biological acoustic analysis; bioacoustic taxonomy identification; fish acoustic signal;
hydroacoustic sensors; species mapping

1. Introduction

Researchers have found that more than 800 fish species are able to produce sounds for diverse
purposes [1,2]. Most of the sounds are emitted at low frequencies [3], usually below 1000 Hz. However,
some pulses can reach 8 kHz [4,5] or present more complex characteristics [6]. In addition, these
emissions are typically broadband short-duration signals (see Figure 1). Fish generate sounds through
several mechanisms, which depend on the species and a variety of circumstances, such as courtship,
threats or defending territory [7]. Hence, most fish make species-specific acoustic signals that can be
gathered using passive acoustic sensors (hydrophones).

Passive acoustic surveys are widely used to monitor presence/absence of marine fauna, tracking
their movement or estimating seasonal distribution, especially in the study of marine mammals [8,9].
These recordings typically include noise from the natural environment and anthropogenic sources [10],
which have to be suppressed to focus on biological signals. Anthropogenic noise has become one of
the greatest sources of background noise in oceans, which is produced by human activity: commercial
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shipping, oil extraction, fishing, etc. Moreover, passive acoustic sensors offer advantages over visual
monitoring systems in waters with poor visibility and with adverse weather conditions [11].

Several techniques have been applied to characterize acoustic vocalizations in wildlife animals
for automatic detection and classification. Exhaustive studies have been conducted in birds [12],
amphibians [13], insects [14] and bats [15] with varying degrees of success. As for marine fauna, some
works can be found in the literature concerning the acoustic identification of whales and dolphins.
Gillespie et al. [16] developed a classification system to work with fragmented whistle detections of
four odoncetes, achieving a 94% classification rate. However, when the number of species was increased,
system accuracy dropped heavily. In [17], four types of dolphin calls were identified using a Fourier
Descriptor (FD) to characterize the whistlers shape. Then, K-Nearest Neighbors (KNN) and Support
Vector Machine (SVM) were employed as classifiers. In the end, statistical significant results were not
obtained due to the small corpus.

Different fish species are mainly recognized by sonar images based on shape and geometric
features or by computer vision technologies. For instance, in [18], three species of fish were identified
using acoustic echo sounder surveys and applying the SVM classifier. Sonar echoes were parametrized
by a set of features: morphology, acoustical energy, bathymetry and school–shore distance. In this
work, a classification rate of 89.95% was achieved. As for the visual techniques, in [19], ten species of
fish were successfully classified by a Balance-Guaranteed Optimized Tree (BGOT) using a combination
of features such as color, shape and texture image properties with 95% accuracy.

Figure 1. Fish acoustic vocalization spectrogram.

Nevertheless, a robust intelligent system that identifies fish species by their acoustic signals
has still not been found. Most previous efforts have limited their research to the spectro-temporal
characterization of sound production, and the authors are only aware of a few studies [20,21] that
have utilized the unique acoustic properties of fish for automatic identification. In [20], Kottege et al.
analyzed the sound clicks of the Tilapia mariae fish by applying logistic regression and parameterizing
the signal with a vector of six spectro-temporal features (STF). However, the syllables for training
purposes were manually selected. Meanwhile, Ruiz et al. [21] presented a method that automatically
identifies acoustic emissions of two sciaenid fish by threshold decision. This approach used pitch
strength, drumming frequency and short/long term partial loudness as features producing satisfactory
results, but the proposed system was hardly scalable.
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On the other hand, fish vocalizations can be monitored through autonomous hydrophone arrays
or vector sensors [22]. The vector hydrophone measures the direction of sound vibration and sound
intensity, so it presents advantages in the detection of underwater acoustic targets emitting low and
ultra-low frequency signals [23] such as fish sounds. These technologies are relatively inexpensive
and possess remote monitoring capabilities for long-term data acquisition. Thus, they have become
a valuable tool for biological studies, ecological conservation and fish population estimation.

The aim of this work is to design and implement a robust and novel automatic system for the
identification of fish from its acoustic signals. Therefore, it could be used to map species and detect
changes in fauna composition. For this purpose, four types of features have been extracted for each
call, which have been fused into a single vector. To the best of our knowledge, this research is the first
to fuse frequency (Mel and Linear Frequency Cepstral Coefficients) and temporal (Shannon entropy
and call duration) fish acoustic features. The main novelty of this work comes from the fact that
these features are combined to achieve a robust representation of the sound. Moreover, the results of
three widely used pattern matching techniques have been compared to test the approach: KNN [24],
Random Forest (RF) [25] and SVM [26]. This system has been validated on a dataset composed of 102
marine animals from two public sound collections that were previously labeled by experts.

The remainder of this paper is organized as follows: Section 2 describes the proposed system
and introduces the acoustic data. The classification methods used (SVM, RF and KNN) are described
in Section 3, particularized for acoustic recognition. Then, Section 4 contains the experimental
methodology. Section 5 provides details and discusses the results obtained. Finally, in Section 6,
the conclusions of this work are shown.

2. Proposed System

The proposed system is based on the following phases: first, samples of fish acoustic signals are
gathered using underwater sound sensors and stored in audio files. These recordings are preprocessed
to adapt the input signal. Secondly, the acoustic signal is automatically segmented in syllables and
labeled by species. The features are extracted from each syllable and grouped into a single vector.
Afterwards, they are used to train the classification algorithm. Figure 2 illustrates the proposed system.

Figure 2. Fish call automatic classification system.
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2.1. Acoustic Data

A sound dataset has been constructed using two Internet sound collections. The main source of
audio recordings has been taken from FishBase [27], which is a database developed by the WorldFish
Center (Penang, Malaysia) in collaboration with the Food and Agriculture Organization of the United
Nations (FAO). FishBase contains information of 33,200 species and 258 sound recordings with an
average duration of 14 seconds, belonging to 90 different classes of fish taken with ambient noise from
hydrophone sensors. Most of these recordings come from the previous work of [28], where various
sounds were obtained from fish tanks avoiding some sources of anthropogenic noise. However, the
tanks added other noise sources such as the fish tank pump and bubbling water. Furthermore, 55.91%
of the sounds were obtained under duress (manual or electrically stimulated) or artificial conditions,
and the rest of the sounds were spontaneous or gathered under natural conditions. The second
database, DOSITS (Discovery of Sound In The Sea) [29], is a project of the University of Rhode Island
to divulge information about underwater sound research. DOSITS contains 23 audio files of 21 fish
species, but it presents nine classes in common with FishBase. In addition, audio files have been
sampled at 44.1 kHz in both collections. Therefore, the dataset is finally composed of 102 different fish
species with approximately 18 samples for each class.

2.2. Preprocessing

Most of the sounds emitted by fish are at low frequencies, typically below 1000 Hz [3], but some
of them can produce sounds with frequencies above 8 kHz [5]. Therefore, the input signal is low-pass
filtered at 10 kHz to suppress the high frequency background noise.

2.3. Segmentation

In the segmentation phase, audio signals are automatically split into syllables isolating each
acoustic sound. This procedure is performed applying the method developed by Härmä in [30].
It carries out the Short Time Fourier Transform (STFT) to obtain the spectrogram representation of the
signal denoted as M( f , t), where f is the frequency index and t represents the time index. Then, the
algorithm proceeds as follows:

1. Find the highest amplitude peak such as |M( fn, tn)| ≥ |M( f , t)|∀( f , t) and set the position of the
nth syllable in tn. The amplitude of this point is calculated as Equation (1):

Yn(0) = 20log10(|M( fn, tn)|). (1)

2. Trace the adjacent peaks between t > tn and t < tn until Yn(t− tn) < Yn(0)−βdB, where β is the
stopping criterion. Thus, the starting and ending times of the nth syllable are defined as tn − ts

and tn + te.
3. This trajectory is saved as the nth syllable and deleted from matrix (2):

M( fn, tn − ts, · · · , tn + te) = 0. (2)

4. Repeat the process from step 1 until the end of the spectrogram.

In this approach, STFT is computed using a Hamming window of 512 samples with an overlap
of 35%, which has been set experimentally. Furthermore, a stopping criterion of β = 20 dB has been
selected. The algorithm is applied in all 102 classes used in this paper. Figure 3 shows the results of the
process where the red dashed lines indicate the central points of the syllables detected by the algorithm
in the signal.
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Figure 3. Anguilla rostrata spectrogram and sound signal segmentation.

3. Feature Extraction

After performing the segmentation, temporal and frequency domain characteristics have been
computed for each syllable to yield useful information for the taxonomic classification.

In this paper, the syllables have been spectrally characterized by LFCCs and MFCCs to hold
information of lower and higher frequency regions of the signal [31]. These coefficients are similarly
calculated based on short-time analysis, using a Hamming window of 25 milliseconds with an overlap
of 45% for both features. In addition, MFCC required a frequency scale transformation from Hertz to
Mel scale (3) performed by a set of 26 triangular band-pass filters:

m = 2595 log10

(
f

700
+ 1

)
. (3)

The final MFCC features were obtained from the Discrete Cosine Transform (DCT) of the
log-magnitude output of each triangular filter, Yi. They are computed following Equation (4), where N
is the number of cepstral coefficients and M denotes the number of triangular filters:

MFCCj =
M

∑
i=1

(log |Yi| cos[j(i− 1
2
)]π/M), 0 ≤ j ≤ N − 1. (4)

LFCCs are directly calculated from the log-magnitude Discrete Fourier Transform (DFT) as
is indicated in Equation (5), where K denotes the number of DFT magnitude coefficients (|Xi|).
The number of coefficients have been selected by experimentation in order to seek the best accuracy.
Finally, N = 18 coefficients have been taken for both MFCCs and LFCCs, in all experiments:

LFCCj =
K−1

∑
i=0

(log |Xi| cos[
jiπ
K

]), 1 ≤ j ≤ N. (5)

Furthermore, temporal discriminant attributes have also been extracted from each segment,
Shannon Entropy (SE) [32] and Syllable Length (SL), to obtain a robust representation of the fish
acoustic signal. Finally, the coefficients are grouped in vectors as shown in Label (6), where each vector
has 38 coefficients (18 MFCCs + 18 LFCCs + 1 SE + 1 SL) per row. These vectors are used to feed the
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classification algorithms in the next stage. This information of higher and lower frequency regions and
time variable features have been combined to achieve a complete characterization of the sound:

Parameters = [MFCC LFCC SE SL]. (6)

4. Classification Methods

In the classification stage, three machine learning algorithms, KNN, RF and SVM, have been
employed to conduct a comparative study of task performance. The next subsections show the
implementation details of the algorithms used in this work.

4.1. K-Nearest Neighbor

KNN is a machine learning algorithm that predicts the classification of new data based on the
closest training samples in the feature space. The algorithm decides which class is similar by picking
the K nearest data point distances to the observation. Then, it simply uses the majority of nearest
neighbors to determine the class prediction. In this approach, the number of nearest neighbors was
established in K =

√
n using Euclidean distance, where n is the number of features.

4.2. Random Forest

The algorithm bundles randomly generated decision trees (DT) in which each tree tries to classify
the data interdependently using a bootstrapped random subset of the training samples. In essence,
trees are trained as follows:

1. A set of N syllables are randomly extracted with replacement from the training data.
2. Let M be the number of coefficients in a syllable. At each node m, random features are selected

such as m << M seeking the best split over these m variables.

Finally, RF makes the prediction taking the most popular voted class from all tree predictors in
the forest, as is shown in (7). In this paper, K = 200 trees have been utilized to classify the fish sounds,
fixing the number of predictor variables to m =

√
M.

Prediction = argmaxc(
K

∑
i=1

Yi = c), where Yi is the ith tree vote. (7)

4.3. Support Vector Machine

SVM is a supervised machine learning algorithm that maps input data as points of a higher
dimensional space, splitting them in non-overlapping hyperplanes. The decision boundary is decided
by the calculation of the optimal partition that separates the training data into two classes. Besides this,
the technique is able to work with nonlinear separable data through kernel functions, where the classes
are divided into a higher dimensional space. In this research, the algorithm has been implemented
based on the libsvm library [33] with a Gaussian kernel function K that has been selected after trials
with different kernels. For the experiments, K(x, x′) = exp(−c‖x− x′‖2) has been used with c = 0.45.
Moreover, SVM only recognizes two classes, so the strategy “one-versus-one” [34] has been selected to
perform the multiclass classification. Therefore, it has generated N(N − 1)/2 SVM binary classifiers,
where N represents the number of fish species.

5. Experimental Procedure

In order to evaluate the effectiveness of the proposed system, the features have been incrementally
grouped in the experiments to analyze the contribution of each attribute to the final approach. At the
same time, the acoustic features have been combined with the classification algorithms to seek the best
performance. To ensure independence between the training and testing sets in each simulation (at least
100 simulations by experiments), the syllables obtained automatically from the segmentation of each
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sound have been randomly shuffled and split 50/50 into two datasets, one for training and another for
testing (k-fold cross-validation with k = 2) to achieve significant results. Furthermore, accuracy has
been calculated following Equation (8) for each class and averaging the results. F-Measure value [35]
has also been calculated as 2 ∗ ((P ∗ R)/(P + R)), where P (precision) is the number of correct positive
results divided by the number of all positive results, and R (recall) is the number of correct positive
results divided by the number of positive results:

Accuracy(%) =
Syllables Correctly Identified (Nc)

Total Number of Syllables (Ns)
× 100. (8)

Results and Discussions

The experiments consisted of two phases. The first phase performed an evaluation of different
algorithms and features in order to find the best model capable of recognizing fish calls. For that
reason, 50% of the feature vector samples have been taken for training purposes and the rest for testing.
In the second stage, the training samples have been reduced to 5% in order to verify the robustness of
the methodology.

Table 1 shows how the proposed combination of features reinforces the learning procedure
as a consequence of fusing the temporal and frequency information, regardless of the algorithm
used. MFCCs clearly outperform LFCCs when used individually because fish acoustic signals are
basically generated in low frequencies and MFCCs coefficients emphasize that region of the spectrum.
Meanwhile, LFCCs represent higher frequencies better so they perform poorly in all experiments.
In fact, three species could not be identified at all: Haemulon flavolineatum, Merluccius bilinearis and
Diplectrum formosum. To parametrize lower as well as higher frequencies, both features were fused
(MFCC + LFCC). The experiments verified that the fusion of information increases the performance
of the system enhancing the recognition rate. Finally, the temporal information has been added, SE
and SL, achieving an evident improvement in accuracy. It simplifies the work of the classifier due to
significant temporal differences among the fish calls. Therefore, it confirms that the proposed system
is effective for identifying and classifying fish acoustic signals with a high success rate.

Table 1. Classification results.

Dataset Features Classification Training time (s) Test time (s) Accuracy Median % ± Std.

Fish dataset
(102 species)

MFCC

1 KNN 1 0.04 0.01 91.94% ± 15.27%
RF 1 0.76 0.01 90.34% ± 15.01%

SVM 1 0.28 0.09 91.20% ± 18.25%

LFCC

1 KNN 0.04 0.01 89.05% ± 16.04
RF 0.76 0.01 87.41% ± 16.46%

SVM 0.25 0.09 81.60% ± 28.14%

MFCC + LFCC
KNN 0.05 0.02 94.27% ± 11.10%

RF 1.29 0.02 93.63% ± 10.59%
SVM 0.31 0.10 94.72% ± 12.13%

MFCC + LFCC
+ SE 1 + SL 1

KNN 0.05 0.02 95.24% ± 8.59%
RF 1.14 0.01 93.56% ± 11.42%

SVM 0.34 0.10 95.58% ± 8.59%
1 MFCC: Mel Frequency Cepstral Coefficients; KNN: K-Nearest Neighbors; RF: Random Forest; SVM: Support
Vector Machine; LFCC: Linear Frequency Cepstral Coefficients; SE: Shannon Entropy; SL: Syllable Length.

As expected, KNN requires the lowest training times due to its simplicity. Even so, KNN
outperforms other algorithms in the first two scenarios, applying MFCCs and LFCCs independently.
In this case, SVM and RF are not able to extract discriminant information to separate the classes
properly. After grouping the features, SVM slightly surpasses KNN and overcomes RF. The reason
lies in the fact that SVM with the Gaussian kernel performs better than KNN with nonlinear data.
Furthermore, RF needs a larger set of training data to define a robust model. Finally, the SVM approach
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based on temporal-frequency characteristics achieves the best taxonomic classification rate of 95.58%.
Hence, it was selected for the rest of the experiments.

Figure 4 presents the average accuracy results for each class where the best approach was applied
(MFCC-LFCC-SE-SL with SVM). It reveals poor classification rates in two classes that cannot be
identified properly, and only six species obtained an accuracy lower than 80%. The lowest identification
rate was 46% for Morone saxatilis, whose sounds are constantly mistaken with Pomadasys corvinaeformis
and Conodon nobilis, due to similar frequency responses. The second lowest classification is for
Trachinotus goodei with an accuracy of 68%. This recording presented high background noise and only
four segmented syllables during the identification phase. However, 58 species reached 100% success,
as a consequence of their distinct spectral characteristics.

Figure 4. Results for MFCC/LFCC/SE/SL + SVM. MFCC: Mel Frequency Cepstral Coefficients; LFCC:
Linear Frequency Cepstral Coefficients; SE: Shannon Entropy; SL: Syllable Length; SVM: Support
Vector Machine.

The following experiment verified that this approach is able to deal with a low number of training
samples that were progressively reduced from 50% to 5%. In Table 2, the evaluation shows that the
system can operate reasonably well under these circumstances. Only when the number of samples
drops to 10% does the system show clear signs of decline in effectiveness. At this level, most species
are only represented by one or two samples, thus SVM has serious difficulties in finding an optimal
separation boundary among classes. Nevertheless, this approach is able to maintain the results of
classification above 80%. Hence, it confirms the robustness of the technique.

Table 2. Classifier performance by training set size.

Training Data (%) Accuracy Median (%) ± Std. Precision Recall F-Measure

5 81.77% ± 21.08% 0.8114 0.8168 0.8141
10 83.27% ± 19.17% 0.8385 0.8318 0.8351
20 88.15% ± 15.18% 0.8826 0.8807 0.8817
30 92.57% ± 13.92% 0.9191 0.9244 0.9218
40 94.99% ± 7.99% 0.9426 0.9490 0.9458
50 95.58% ± 8.59% 0.9535 0.9558 0.9546
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Finally, an experiment has been performed applying our best approach (data fusion + SVM)
splitting the database into two subsets: sounds obtained under duress (manual or electrically
stimulated) or artificial conditions (“unnatural sounds”) and sounds generated spontaneously or
under natural conditions (“natural sounds”). Approximately 55.91% of the sounds are considered
“unnatural” and the rest, 44.09%, as “natural”. Performance results are shown in Table 3.

Table 3. Classifier performance by sound type.

Dataset Accuracy Median (%) ± Std. Precision Recall F-Measure

“Unnatural sounds” 95.21% ± 8.26% 0.9452 0.9520 0.9486
“Natural sounds” 98.17% ± 6.48% 0.9839 0.9817 0.9828

Regardless of the nature of the sound, the proposed system is able to perform an efficient
classification. The results are better than in previous experiments due to the reduction of the complexity
of the problem. Furthermore, the “natural sounds” dataset achieved a higher result than the “unnatural
sounds” dataset as a consequence of reverberant sounds with high frequency harmonics that are
produced under artificial conditions.

As mentioned previously, the number of studies concerning fish acoustic signals through
intelligent systems is very limited. Therefore, a comparative study has been done with other
state-of-the-art fish recognition techniques based on sonar images and morphological features. Table 4
draws attention to the discriminating capabilities of acoustic fish signals regarding visual methods.
The proposed system was able to recognize a larger dataset of fish species with a higher classification
rate than other techniques.

Table 4. Comparison of the proposed system vs. state-of-the-art.

Reference Database Features Classification Accuracy

[21] 2 species
Drumming frequency,

pitch, short
and long term partial loudness

Threshold 80% and 90%

[18] 3 species
Morphology, spatial location,

acoustic energy
and bathymetry

SVM 1 89.55%

[36] 2 species Morphology SVM 78.59%

[19] 10 species Color, texture
and morphology BGOT 1 91.70%

[37] 15 species
Euclidean network technique,
quadratic network technique
and triangulation technique

Bayesian 75.71%

This work Fish dataset (102 species) MFCC/LFCC/SE/SL 1 SVM 95.58% ± 8.59%
1 SVM: Support Vector Machine; BGOT: Balanced-Guaranteed Optimized Tree; MFCC: Mel Frequency
Cepstral Coefficients; LFCC: Linear Frequency Cepstral Coefficients; SE: Shannon Entropy; SL:
Syllable Length.

6. Conclusions

Fish acoustic communication capabilities are well-known from literature; however, their
species-specific characteristics have been little studied for automatic identification purposes. In this
paper, we have introduced a novel automatic classification method of fish species based on their
bioacoustic emissions, which allows the analysis of remote underwater data without human
intervention. The acoustic signals have been parameterized through a combination of time-variable
and frequency domain information, obtaining a complete representation of the signals. The results of
this approach are promising with an average classification accuracy of 95.58% and a standard deviation
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of 8.59%. This shows that the proposed system achieves a better recognition rate than other methods
based on computer vision techniques. Hence, these results suggest that this technique should be
studied as an alternative method for estimation of fishery resources or to map species biodiversity.
It has been verified over a dataset formed of 102 fish species with a relatively low number of samples.
Unfortunately there are few public datasets of fish sounds to perform a broad study. In fact, the authors
are not aware of other studies that have automatically and acoustically classified such a large number
of fish species. Furthermore, the system has been tested in small training set scenarios, proving the
robustness of the method. Even using only 5% of the samples for training, the system was able to
achieve results above 80%.

In this research, it has also been found that MFCCs are more efficient for modeling these signals
due to the sounds produced by fish mainly being emitted at low frequencies. However, adding
information of high frequencies through LFCCs has significantly improved the performance on the test
set. Finally, temporal information has been incorporated into the model, Shannon Entropy and Syllable
Length, achieving a stronger taxonomic classification system due to the clear temporal differences
among their acoustic signals. On the other hand, the system performance was quite similar for the
different types of machine learning algorithms used, with differences below 2% in most cases, although
SVM has been proven to be more effective in the bioacoustic recognition task because of the data
showing nonlinear relationships.

However, further work should be done in order to reach a high quality solution. At least 800 fish
species have been reported to produce bioacoustic sounds, so it is necessary to extend the corpus
with additional species. Furthermore, in shallow water, low frequency signals present little range
of propagation. Therefore, passive techniques should be combined with active acoustics and video
methods to increase the scope of application. On the other hand, long-term acoustic surveys should be
collected under natural conditions that would increase data quality and fine-tune the system for real
world applications.
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