Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/17887
Title: | Short-term wind power forecast based on cluster analysis and artificial neural networks | Authors: | Lorenzo Navarro, José Javier Méndez Rodríguez, Juan Ángel Castrillón-Santana, Modesto Hernández Sosa, José Daniel |
UNESCO Clasification: | 120304 Inteligencia artificial | Keywords: | Prediction | Issue Date: | 2011 | Project: | Tecnicas de Visión Para la Interacción en Entornos de Interior Con Elaboración Mapas Cognitivos en Sistemas Perceptuales Heterogéneos. | Journal: | Lecture Notes in Computer Science | Conference: | 11th International Work-Conference on Artificial Neural Networks (IWANN) 11th International Work-Conference on on Artificial Neural Networks, IWANN 2011 |
Abstract: | In this paper an architecture for an estimator of short-term wind farm power is proposed. The estimator is made up of a Linear Machine classifier and a set of k Multilayer Perceptrons, training each one for a specific subspace of the input space. The splitting of the input dataset into the k clusters is done using a k-means technique, obtaining the equivalent Linear Machine classifier from the cluster centroids. In or- der to assess the accuracy of the proposed estimator, some experiments will be carried out with actual data of wind speed and power of an exper- imental wind farm. We also compute the output of an ideal wind turbine to enrich the dataset and estimate the performance of the estimator on one isolated turbine. | URI: | http://hdl.handle.net/10553/17887 | ISBN: | 978-3-642-21501-8 9783642215001 |
ISSN: | 0302-9743 | DOI: | 10.1007/978-3-642-21501-8_24 | Source: | Cabestany J., Rojas I., Joya G. (eds) Advances in Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science, vol 6691. Springer, Berlin, Heidelberg |
Appears in Collections: | Actas de congresos |
This item is licensed under a Creative Commons License