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Abstract. In this paper an architecture for an estimator of short-term
wind farm power is proposed. The estimator is made up of a Linear
Machine classifier and a set of k Multilayer Perceptrons, training each
one for a specific subspace of the input space. The splitting of the input
dataset into the k clusters is done using a k-means technique, obtaining
the equivalent Linear Machine classifier from the cluster centroids. In or-
der to assess the accuracy of the proposed estimator, some experiments
will be carried out with actual data of wind speed and power of an exper-
imental wind farm. We also compute the output of an ideal wind turbine
to enrich the dataset and estimate the performance of the estimator on
one isolated turbine.

1 Introduction

Nowadays there exists a wide consensus about the global warming [6]. The im-
plication of the human activity in this climatological phenomenon has not been
proved because there exists a cyclic component too. However, it is clear that
the burning of fossil fuel increases the concentration of greenhouse gases that
accelerates the warming effect, hence the growing interest in the use of renew-
able energy sources that will reduce the emission of them. Among the available
alternatives, wind is a promising one, showing a steady expansion.

Unfortunately, the wind is not constant and it can be considered as a chaotic
system whose predictability is limited. This fact along with the increase in in-
stalled power capacity have made that in many countries research groups have
been granted to develop forecasting systems [4,17].

Depending on the forecast horizon, models can be divided into very short-
term, short-term and long-term models. In each country, the Transmission Sys-
tem Operator has to deal with the management of the electric system in the
different control and planning levels and also with the power production sched-
ules in power plants. So the very short-term and short-term forecasting of wind
power production becomes essential [1].
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The autoregressive (AR) based models such as ARMA, ARX and Box-Jenkins
methods have been used historically for very short-term wind forecasting up to
few hours ahead [1]. Artificial neural networks (ANN) have been also used for
wind or power forecast due to their ability of dealing with non linearities unlike
AR models. Mohandes et al. [14] presented a comparison between AR model and
neural networks for wind speed prediction and conclude that the ANN model
outperforms the AR model in both one and several days horizon. Another com-
parison between regression and ANN models was presented by Li et al. [11] using
as input the speed and direction of the wind measured in two meteorological tow-
ers. They found that Multilayer Perceptron ANN model outperforms the best
regression model, which is a 3rd degree polynomial. More recent works have also
confirmed the validity of ANN models for power forecasting [13,10].

Some researchers have proposed hybrid models. Ramirez-Rosado et al. [16]
compared two systems for wind power forecast: FORECAS and SGP. In FORE-
CAS the Power Curve Model (PCM) of each turbine was obtained with a Multi-
layer Perceptron neural network whose inputs were numerical weather prediction
forecast values. The output of the system was obtained from a neural network
that combines the PCM and AR outputs. On the other hand, SGP system is
made up of 12 different models: nine neural networks used to forecast in the very
short-term horizon and three additional models based on Elman and Modular
neural networks. Thus, depending on the forecast horizon, the models were se-
lected to forecast the hourly mean of electric power generated. Kusiak and Li
[9] presented an approach of several power predictor which were the results of a
previous clustering analysis. In their work, instead of using a combination of NN
for each horizon, they customize a NN for each subspace of the input domain.

The aim of this paper is to present a hybrid architecture for short-term wind
power forecast. The proposed approach differs from one presented in [9] in two
aspects. On the one hand, the estimation is done based on data that are easily
available in a wind farm, namely, wind speed and generated power. On the other
hand, a short-term power prediction scenario is considered instead of a very
short-term scenario. To evaluate the validity of the proposed architecture some
tests are carried out with actual data from an experimental wind farm in the
North of Spain.

The paper is organized as follows: in section 2 the estimator proposed in
this work is explained. Experiments are shown in section 3 and in section 4
conclusions and further works are presented.

2 Proposed Hybrid Estimator

Some works have demonstrated the validity of Multilayer Perceptrons (MLP)
as function approximators of scalar continuous functions [2,8]. The aim is to
find a mapping between a set of samples (xi, yi) where yi = f(xi), being f the
unknown scalar underlying function: f : Rn → R. The set of all samples made
up the training dataset, D = {(xi, yi)}, under the assumption that they are
independently and identically distributed.
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Fig. 1. Architecture of the proposed combined estimator

The set of nonlinear weight equations that relates the neural network’s ad-
justable parameters to the data can be obtained with optimization-based tech-
niques [12,7,5]. These methods minimize the error function, normally the Root-
mean-square error (RMSE), over the whole training dataset. If the underlying
function f is too complex due to the nature of the problem as in short-term wind
power prediction, the complexity of the MLP must be increased to approximate
better f from the training dataset. Consequently the optimization methods can
get trapped in undesirable local minima.

Instead of using the original training set, the proposed architecture is based
on a splitting of the input space into subspaces under the hypothesis that cus-
tomized models in each subspaces yield higher prediction accuracy. Unsupervised
learning methods are designed to split a set of samples into different subsets (clus-
ters) where the samples of each cluster are similar among them and different from
the samples of other clusters. Thus the initial training dataset D is divided into
k non-overlapping subsets, D = ∪k

j=1D
j , using the k-means clustering method

[3], where each subset Dj is characterized by its centroid Zj .
The clustering process is equivalent to define k classes in the input space

so when the power must be estimated for an unseen sample, it must be firstly
classified to feed the corresponding estimator. This classification is done with a
Linear Machine classifier d(x),

d(x) = max
j=1...k

{dj(x)} (1)

where dj(x) is the linear discriminant function associated to each cluster

dj(x) = ωj
0 +

n∑

l=1

ωj
l x

j
l (2)

whose weights ωj
l are computed from the centroids Zj as

ωj
0 = −1

2
||Zj ||2 (3)

ωj
l = Zj

l ; l = 1 . . . n (4)

where Zj
l is the l-th centroid element and n is the problem dimension (lag).
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Fig. 2. Autocorrelation of the wind speed

In the wind power forecast problem, the samples x are wind speed or power
measured in n intervals previous to current time t. The function of interest is
the estimated power at a horizon h, p̂(t + h). For each cluster Dj , a MLP is
trained getting k estimators customized for each subspace of the input domain.
The architecture of the estimator is shown in Figure 1. When the power for a
new sample must be estimated, a first classification stage is carried out by the
Linear Machine to decide which MLP will be in charge of the estimation.

3 Experiments

Experiments were made with actual wind speed and wind farm power data
from Sotavento Galicia project. The wind speed series comprises from August
5th, 2009 until February 4th, 2010 with time steps of 10 minutes. Data were
preprocessed to obtain mean hourly wind speed which yield a total of 4416
values. The data are divided into the training dataset (2/3) and test dataset
(1/3).

The training dataset is used to split the input space into k clusters using
the k-means algorithm, training a MLP for each cluster. After that, a Linear
Machine Classifier is obtained which assigns every test sample to one of the k
MLP. The output of the estimator for each test sample is the output of the MLP
selected by the classifier (Figure 1).

Due to the random initialization of the k-means clustering method, 200 runs
were done and the one with the lowest value for the sum of within-cluster point-
to-centroid distances for the whole clusters is considered. Also to minimize the
effect of the random initialization of the MLP weights, we provide the mean
obtained from 25 training trials in order to reduce the uncertainty of the results.

As it is not possible to access to the power produced by only one turbine, the
output of an ideal wind turbine whose transfer function has 5 and 12.5 m/sec
cut-off values was included in the experiments. So, four different scenarios were
considered in the experiments depending on the predicted variable and the inputs
that feed the estimator:
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Table 1. Number of neurons in the hidden layer of the MLP

Prediction Horizon

1 hour 2 hours 3 hours 4 hours 5 hours 6 hours

Scenario A 4 7 6 6 9 6

Scenario B 8 8 7 8 6 8

Scenario C 2 2 1 2 2 2

Scenario D 2 1 4 4 6 4

Scenario A. The predicted variable is the wind farm power computed from the
wind speeds, p̂(t + h) = f(v(t), v(t − 1), v(t − 2), . . . , v(t − n + 1)))

Scenario B. The predicted variable is the wind farm power computed from
previous wind farm power values, p̂(t+h) = f(p(t), p(t−1), p(t−2), . . . , p(t−
n + 1)))

Scenario C. The predicted variable is the ideal turbine output computed from
the wind speeds, p̂vesta(t + h) = f(v(t), v(t − 1), v(t − 2), . . . , v(t − n + 1)))

Scenario D. The predicted variable is the ideal turbine output computed from
previous ideal turbine outputs, p̂vesta(t + h) = f(pvesta(t), pvesta(t− 1), . . . ,
pvesta(t − n + 1)))

Instead of using the RMSE as measure to assess the accuracy of the results,
the improvement over a reference model is carried out using,

ImpRMSE =
RMSEreference model − RMSEproposed model

RMSEreference model
100% (5)

As reference model, the one proposed by Nielsen [15] is used which is an extension
over the pure persistence model that also includes long-term information as a
linear expression: ŷ(t + k) = b + ay(t). Coefficients of the enhanced persistence
model for wind farm power are: a = 0.9487 and b = 37.5692; and for ideal turbine
output: a = 0.8947 and b = 0.0281.

An important parameter of the MLP topology for the experiments is the
number of inputs n, that is, the lag time for the power prediction. To find it,
the autocorrelation of the wind speed is obtained (Figure 2) and it is found that
beyond 4 hours the influence is negligible so a lag time of 4 hours is considered.
Bayesian regularization [5] was used to train the network. It uses as goal function
a combination of squared errors and weights, and then determines the correct
combination so as to produce a network that generalizes well.

The other parameters that define the topology of the network are the num-
ber of hidden layers and neurons in each layer. A one hidden layer topology is
considered with hyperbolic tangent sigmoid activation functions in the hidden
layer and linear activation function in the output layer. To decide the number
of neurons, 25 training trails for 1 to 16 neurons in the hidden layer for each
scenario and horizon were carried out. After that, an ANOVA statistical test was
performed to find the number of neurons that yields better performance and the
results are shown in Table 1.
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Table 2. ImpRMSE for different number of clusters and horizons (in hours) for the
Scenario A

Prediction horizon k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

h = 1 -92% -78% -67% -74% -69% -66% -65% -67%

h = 2 -44% -43% -40% -34% -40% -32% -29% -33%

h = 3 -25% -25% -26% -23% -24% -18% -18% -21%

h = 4 -16% -17% -19% -20% -14% -11% -11% -12%

h = 5 -9% -15% -15% -13% -8% -8% -6% -6%

h = 6 -5% -9% -10% -9% -5% -5% -3% -2%

Table 3. ImpRMSE for different number of clusters and horizons (in hours) for the
Scenario B

Prediction horizon k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

h = 1 83% 93% 91% 93% 93% 90% 91% 0%

h = 2 84% 91% 89% 90% 92% 84% 88% 0%

h = 3 72% 91% 88% 90% 90% 90% 92% 91%

h = 4 70% 74% 70% 76% 76% 77% 79% 79%

h = 5 54% 66% 64% 73% 73% 73% 72% 72%

h = 6 52% 63% 62% 70% 70% 70% 70% 66%

Now the results of every experiment are analyzed. Table 2 shows the results
obtained for the Scenario A where the wind speed of the previous 4 hours are
used as input, p̂(t+h) = f(v(t), v(t−1), v(t−2), v(t−3)). In this scenario the MLP
model performance is lower than the reference model for all the configurations.
Analyzing the effect of the cluster stage in the performance of the estimator it
can be observed that the performance increases for almost all the horizons with
a maximum in k = 7 . With more clusters the performance decreases because
the obtained MLP are overspecialized and the generalization capability of the
estimator is worse.

Results for Scenario B are shown in Table 3 where the 4 previous hourly mean
wind farm power values are used as predictor variables, p̂(t + h) = f(p(t), p(t −
1), p(t− 2), p(t− 3)). Unlike Scenario A, in this scenario the estimator surpasses
the reference model giving better accuracy for all the horizons and number of
clusters. The splitting of the input space gives better performance because for
all the columns the results are higher than those of the column labeled as k = 1.

Tables 4 and 5 show the results considering an ideal turbine. When the power
is estimated from previous wind speed (Table 4), the splitting of the input space
with clustering analysis improves slightly the results obtained with the initial
training dataset (column k = 1). On the other hand, the use of cluster analysis for
the Scenario D makes slightly worse the results. However in these two scenarios
where the output of an ideal turbine was used, the difference between the best
and worst estimation is not so noticeable as in scenarios where actual data are
used.
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Table 4. ImpRMSE for different number of clusters and horizons (in hours) for the
Scenario C

Prediction horizon k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

h = 1 -8% -7% -10% -8% -11% -11% -10% -15%

h = 2 -6% -6% -7% -7% -4% -4% -3% -4%

h = 3 1% 0% 0% -1% -1% -1% -1% -2%

h = 4 -1% -2% -1% -3% -3% -2% -3% -3%

h = 5 -2% -1% -2% -2% -2% -2% -3% -2%

h = 6 -2% -3% -1% -1% -1% -3% -2% -2%

Table 5. ImpRMSE for different number of clusters and horizons (in hours) for the
Scenario D

Prediction horizon k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

h = 1 1% 0% 0% 0% 0% 0% -1% -2%

h = 2 4% 4% 4% 4% 4% 3% 3% 1%

h = 3 7% 6% 5% 6% 6% 5% 5% 4%

h = 4 8% 7% 6% 7% 6% 7% 6% 6%

h = 5 9% 8% 8% 8% 7% 8% 7% 7%

h = 6 10% 9% 8% 9% 9% 8% 8% 8%

4 Conclusions

This paper proposes a hybrid estimator for power prediction. The estimator is
composed of a Linear Machine and a set of customized MLP. The Linear Ma-
chine classifies the samples into one of several subsets which has been previously
obtained with a clustering analysis. The proposal has been tested on actual
data from a wind farm and data from an ideal wind turbine, both for different
prediction horizons.

From the obtained results it can be concluded that for the actual data, which
are of interest to industry, the proposed estimator increases the estimation ac-
curacy compared to a single MLP. On the other hand, for the data of an ideal
wind turbine the proposed estimator performance is similar to a single MLP.
An interesting conclusion is that the wind farm power prediction is better done
when power is used as predicting variable instead of wind speed. Another fact
that the experiments has brought up and that it is in consonance with the na-
ture of the persistence model, it is that as the horizon goes farther the proposed
estimator yields better performance.
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