Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/17856
DC FieldValueLanguage
dc.contributor.authorAntón Canalís, Luisen_US
dc.contributor.authorSánchez Nielsen, Elenaen_US
dc.contributor.authorCastrillón-Santana, Modestoen_US
dc.contributor.otherCastrillon-Santana, Modesto-
dc.contributor.otherSanchez-Nielsen, Elena-
dc.date.accessioned2016-07-15T11:16:33Z-
dc.date.accessioned2018-06-18T06:44:41Z-
dc.date.available2016-07-15T11:16:33Z-
dc.date.available2018-06-18T06:44:41Z-
dc.date.issued2005en_US
dc.identifier.isbn3-540-26153-2en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/10553/17856-
dc.description.abstractEnabling natural human-robot interaction using computer vision based applications requires fast and accurate hand detection. However, previous works in this field assume different constraints, like a limitation in the number of detected gestures, because hands are highly complex objects difficult to locate. This paper presents an approach which integrates temporal coherence cues and hand detection based on wrists using a cascade classifier. With this approach, we introduce three main contributions: (1) a transparent initialization mechanism without user participation for segmenting hands independently of their gesture, (2) a larger number of detected gestures as well as a faster training phase than previous cascade classifier based methods and (3) near real-time performance for hand pose detection in video streams.es
dc.languageengen_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceLecture Notes in Computer Science[ISSN 0302-9743],v. 3522, p. 553-560en_US
dc.subject120304 Inteligencia artificiales
dc.titleFast and accurate hand pose detection for human-robot interactionen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.identifier.doi10.1007/11492429_67en_US
dc.identifier.scopus25144442700-
dc.identifier.isi000230026900067-
dcterms.isPartOfPattern Recognition And Image Analysis, Pt 1, Proceedings-
dcterms.sourcePattern Recognition And Image Analysis, Pt 1, Proceedings[ISSN 0302-9743],v. 3522, p. 553-560-
dc.contributor.authorscopusid8921191600-
dc.contributor.authorscopusid13105159100-
dc.contributor.authorscopusid22333278500-
dc.identifier.absysnet728053-
dc.description.lastpage560en_US
dc.description.firstpage553en_US
dc.relation.volume3522en_US
dc.investigacionIngeniería y Arquitecturaes
dc.project.referenceTIN2004-07087; PI20003/165 ; UNI2003/06es
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.type2Actas de congresosen_US
dc.identifier.wosWOS:000230026900067-
dc.contributor.daisngid3547239-
dc.contributor.daisngid1518383-
dc.contributor.daisngid1060138-
dc.identifier.investigatorRIDK-9040-2014-
dc.identifier.investigatorRIDNo ID-
dc.identifier.ulpgces
dc.description.jcr0,402-
dc.description.jcrqQ4-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Appears in Collections:Actas de congresos
Thumbnail
Postprint
Adobe PDF (159,96 kB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



This item is licensed under a Creative Commons License Creative Commons