Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/155618
Título: River plastic hotspot detection from space
Autores/as: Amanda, Graciela
López, José F. 
Rußwurm, Marc
van Emmerik, Tim H.M.
Pérez-García, Ámbar 
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Earth Sciences
Environmental Science
Pollution
Remote Sensing
Fecha de publicación: 2025
Publicación seriada: Iscience 
Resumen: Plastic pollution threatens terrestrial and aquatic ecosystems, and rivers play a central role in transporting and retaining plastics across landscapes. Effective mitigation requires scalable methods to identify riverine plastic accumulation hotspots. Here, we present a semi-automated, cloud-based pipeline that integrates satellite remote sensing and machine learning to detect river plastic hotspots. High-resolution PlanetScope imagery is used to annotate training regions, which are transferred to Sentinel-2 multispectral data to train Random Forest classifiers within Google Earth Engine. The approach is evaluated across three contrasting river systems—the Citarum (Indonesia), Motagua (Guatemala), and Odaw (Ghana)—to assess transferability under diverse environmental conditions. Intra-river transfer achieves up to 99.5% accuracy, while optimized inter-river transfer yields a plastic F1-score of 79%, outperforming previously reported results of 69%. By providing an open-access Google Earth Engine application, this work enables reproducible, large-scale monitoring of riverine plastic pollution and supports the development of global, satellite-based assessment strategies.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/155618
ISSN: 2589-0042
DOI: 10.1016/j.isci.2025.114570
Fuente: iScience[EISSN 2589-0042],v. 29 (2), (Febrero 2026)
Colección:Artículos
Adobe PDF (75,31 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.