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SUMMARY

Plastic pollution threatens terrestrial and aquatic ecosystems, and rivers play a central role in
transporting and retaining plastics across landscapes. Effective mitigation requires scalable
methods to identify riverine plastic accumulation hotspots. Here, we present a semi-automated,
cloud-based pipeline that integrates satellite remote sensing and machine learning to detect
river plastic hotspots. High-resolution PlanetScope imagery is used to annotate training regions,
which are transferred to Sentinel-2 multispectral data to train Random Forest classifiers within
Google Earth Engine. The approach is evaluated across three contrasting river systems—the
Citarum (Indonesia), Motagua (Guatemala), and Odaw (Ghana)—to assess transferability un-
der diverse environmental conditions. Intra-river transfer achieves up to 99.5% accuracy, while
optimized inter-river transfer yields a plastic F1-score of 79%, outperforming previously reported
results of 69%. By providing an open-access Google Earth Engine application, this work enables
reproducible, large-scale monitoring of riverine plastic pollution and supports the development of
global, satellite-based assessment strategies.

KEYWORDS

Remote sensing, Macroplastic detection, machine learning, Google Earth Engine, Sentinel-2,
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INTRODUCTION

Plastic pollution is a growing global concern that threatens terrestrial and aquatic ecosystems,
species, and human health and livelihood™2. Through initiatives such as the Global Plastics
Treaty, governments are committing to the reduction of environmental plastic pollution®. To effec-
tively reduce plastic pollution, understanding the sources, pathways, and sinks of plastic pollution
is key“. Rivers connect the terrestrial and marine environment, and therefore play an essential
role in the global distribution of plastics. Plastics can be retained within rivers for extended peri-
ods and may be exported to the sea. Plastic transport and retention dynamics strongly depend
on the plastic item properties and river characteristics®®. Jointly they determine whether plastics
remain mobile and travel long distances, or accumulate on floodplains, within the sediment or
around coastal zones”. Plastic transport and retention dynamics strongly depend on the plastic
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item properties and river characteristics®®. Together, these factors determine whether plastics
remain mobile and travel long distances, or accumulate on floodplains, within the sediment or
around coastal zones”. Reliable monitoring of plastic pollution across river compartments is cru-
cial for identifying accumulation hotspots, establishing baseline pollution levels, and evaluating
the impact of plastic reduction strategies®®. However, in situ monitoring of plastic pollution can
be labour and cost-intensive and often unsuitable during and after extreme events.

Satellite remote sensing offers a potential avenue to upscale plastic detection efforts"® due
to the distinct spectral reflectance of plastic compared to water, vegetation, sand, and other
materials™. The spectral signatures also vary with polymer type and state of weathering®s14,
Multi- and hyperspectral imagery has been successfully used to detect and classify plastics un-
der laboratory and field conditions, often using (combinations of) spectral indices™€. Although
the detection can be affected by several physical and environmental constraints such as cloud
cover, seasonal variability, and illumination conditions, various satellite remote sensing—based
approaches have been developed for direct and indirect detection of plastics on land, in the
ocean, and in rivers.

In recent years, significant progress has been made in satellite-based detection of plastic in
both inland and coastal environments™2% Optical and multispectral satellite data, particularly
from Sentinel-2, have been widely applied to detect floating or stranded plastics using spectral
indices and machine learning models. Several studies have focused on marine and coastal set-
tings"23, while others explored inland or riverine scenarios. Among these,** demonstrated the
potential of Sentinel-2 time series for detecting floating debris on inland waters, and=> applied
supervised machine learning with Very High Resolution (VHR)-assisted labeling to map river-
ine litter, discussing the 10 m spatial resolution limitation for small debris patches (< 100 m?).28
validated an adjusted Plastic Index for highly polluted rivers, and regional-scale analyses have
identified waste hotspots and river blockages using multispectral data%”. Hybrid approaches in-
tegrating citizen science and remote sensing have also emerged, linking satellite observations
with in-situ river monitoring®.

Building on these developments, recent advances in cloud-based processing have enabled
the scalable implementation of such methodologies. Platforms such as Google Earth Engine
(GEE)2® and Microsoft Planetary provide access to extensive multi-temporal satellite archives
and powerful cloud computing resources, allowing large-scale execution of machine learning
algorithms without the need for local data storage®%=2. In plastic monitoring, GEE has already
been employed to map floating plastics in rivers™ and in marine environments=2.

This work evaluates the potential of a semi-automated pipeline for detecting plastic patches
and hotspots in river systems, integrating satellite imagery and machine learning within a re-
producible workflow. The core classification and detection process is implemented in Google
Earth Engine (GEE), enabling a scalable application using Sentinel-2 multispectral data. High-
resolution PlanetScope imagery is used in the initial, external step to manually annotate train-
ing regions of interest (ROIs), enhancing spatial precision. Although this annotation step is
not automated and requires access to commercial data - limiting its scalability - it serves as a
one-time calibration phase. Once ROIls are uploaded to GEE, the classification pipeline can
be generalized and applied globally using pre-trained models. Auxiliary field-based or observa-
tional data are used in this study to interpret and validate results, but they are not part of the
automated pipeline. We apply our methodology to three river systems with varying characteris-
tics: the Citarum River in Indonesia, the Motagua River in Guatemala, and the Odaw River in
Ghana. Each river represents different environmental, climatic, plastic hotspot composition, and
social contexts. We evaluate both the classification performance and transferability of the mod-
els across sites. We also used our methodology for a time series analysis to produce hotspot
maps, and developed a general model with reduced features that support future field monitoring
and intervention planning. We present a companion GEE application that allows end-users to
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apply the trained general model on new rivers worldwide, directly using Sentinel-2 imagery. This
operational tool extends the study’s impact by enabling the scalable application of a validated
model, providing a bridge between research and field-ready plastic monitoring.

The key innovation of this study lies in its approach to building and evaluating generalizable
river plastic classifiers based on the synergy between spatial detail and spectral richness. By
combining expert-led manual annotation from high-resolution imagery with systematic feature
analysis and machine learning in a cloud environment, we demonstrate that high-performance
plastic detection is possible even with medium-resolution Sentinel-2 data. Previous studies have
demonstrated the potential of remote sensing for plastic detection in aquatic systems®*. A re-
cent study estimated fractional plastic coverage using high-resolution PlanetScope and Skysat
imagery®, while others exploit spectral indices for plastic detection®®. These efforts highlight
the importance of both spatial detail and spectral analysis in detecting plastic features. Build-
ing on this foundation, our work integrates these insights into a scalable, cloud-based workflow
tailored specifically for riverine environments. We use high-resolution PlanetScope imagery to
annotate training data, and leverage Sentinel-2 multispectral data within Google Earth Engine for
classification. Our approach extends the methodology to diverse river systems by incorporating
spectral indices, band importance analysis, and inter-river transfer tests. This is the first study to
combine high spatial and spectral information in GEE, demonstrating its feasibility for developing
general plastic detection models while also identifying current limitations and paths forward for
model robustness and scalability.

RESULTS

For clarity, in the following sections, we refer to each study site by the name of its country
(Indonesia, Guatemala, and Ghana). However, the results correspond to specific river sec-
tions—Citarum, Motagua, and Odaw—where plastic accumulation hotspots have been previ-
ously documented and described in detail in Section ??.

Spectral characteristics of river plastic

In the first experiment, we analyzed the spectral profiles of the three target classes (Plastic, Wa-
ter, and Vegetation) across the riverine environments in Indonesia, Guatemala, and Ghana. The
first row of Figure [1| presents the mean reflectance spectra, highlighting overall similarity among
classes with region-specific variations. In Indonesia, both the Plastic and Vegetation classes
exhibit a higher standard deviation, indicating greater spectral heterogeneity. This variability
likely arises from mixed pixels containing both plastic debris and surrounding organic material.
In Guatemala, spectral curves show lower intra-class variability, and Vegetation displays a pro-
nounced peak in the near-infrared region, suggesting the presence of healthy flora. Ghana yields
highly similar spectral responses for Plastic and Water. This convergence is attributed to the nar-
row geometry of the river, where pixel mixing reduces the ability to distinguish between surface
materials.

To improve class separability, several spectral indices have been implemented (second row
of Figure [1). Among these, Sl;; offers the most consistent separation, being the only one that
can improve discrimination in Ghana. NDVI and Pl perform well in Guatemala, which overall
presents the highest separability across all computed indices. NDVI is also the index that best
distinguishes water from other classes in both Indonesia and Guatemala. In contrast, the FDI
lacks discriminatory capacity, indicating limited applicability for detecting plastic accumulations
in fluvial environments. To better assess the spectral separability of the three classes, the NDVI
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Figure 1: Spectral analysis of datasets. In the first row, the mean spectra with their standard
deviation, and in the second row, the indices boxplot.

is plotted against Sl;3, as these two indices demonstrated the highest discriminative power and
can complement each other.

To illustrate the spectral variability produced by mixed debris within the plastic accumulation
patches, Figure [2| shows images ID 3 and ID 4 from Indonesia, including the polygons manu-
ally delineated. Each point represents the mean index value for a class, along with its standard
deviation and minimum and maximum bounds to visualize intra-class variability and inter-class
overlap. These two scenes were selected to exemplify how the plastic patch composition alters
its spectral response, and therefore, class separability. In ID 3, vegetation primarily appears
along the riverbanks, and the plastic patch appears homogeneous. As a result, although the
maximum values of the vegetation and plastic classes partially overlap, their mean values are
distinct, and the standard deviations do not intersect, indicating that these classes can be sta-
tistically separated. In contrast, ID 4 reveals green dots within the plastic patch, likely due to
embedded vegetation. This leads to greater spectral variability and overlapping standard devi-
ations between the plastic and vegetation classes. This observation raises questions about the
purity and composition of the plastic patches—issues that are further analyzed in the Discussion
section.

River plastic hotspot detection

The Random Forest (RF) classifier was trained on image IDs 1-6 and tested on IDs 7—10 for
each river, all representing different dates of the same hotspot section. The performance of the
model on each river is shown in Figure [3, with the true-colour image in the first row and the
classification map overlaid on the second row. The three selected images are from the test sets
and show how well the classifier performs in identifying the different coverages. The quantitative
analysis is presented in Table 1, which displays the overall accuracy or F1-score of the Plastics
class for the three rivers. Also in this table are the results not only for the classification using the
satellite bands (LA2 B1-12), but also the performance when including the spectral indices (NDVI,
Pl, FDI, Sl3). By also providing the indices to the classifier, performance improves in all cases,
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Figure 2: NDVI and Sl;3 values for each class. The centre dot represents the mean index value
for each class, with the dashed lines representing two standard deviations. The dashed outer
lines represent the minimum and maximum values of the indices for each group.

especially in Indonesia and Ghana, where it increases by more than 20%. This confirms the
discriminatory capacity of the indices to detect plastic accumulation mentioned in the previous
section.

Table 1: Rivers classification metrics.

Dataset
Indonesia Guatemala Ghana
Only Overall Accuracy 98.8% 76.7% 70.0%
Bands Plastics F1-score 71.8% 71.9% 73.7%
Bands + Overall Accuracy 99.3% 83.6% 73.0%
Indices Plastics F1-score 98.5% 91.9% 76.6%

Hotspot maps can be obtained by generating classification maps for various dates, and the
areas with the highest frequency of plastic accumulation can be identified. As shown in the river
hotspot maps in Figure 3, plastics tend to accumulate in the river bends. In this case, the per-
centage represents the proportion of images in which plastic was detected at each location, with
100% indicating detection in all 10 images of the dataset for a given river. In Guatemala, plastics
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Figure 3: Sentinel-2 imagery of riverine plastic pollution. Top row: representative image per
river with plastic patches highlighted in yellow and annotated scale (same for each column).
Middle row: scene classification maps. Bottom row: hotspot maps from ten-image aggregates
per location.

accumulate mainly at both ends of the reservoir. In Ghana, accumulation can be observed at the
downstream end of the river section, where the river course is affected by a water-control weir.
The left side of the river is also highlighted; however, this may be influenced by pixels mixed with
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adjacent infrastructure.

Band importance for the classifier

A key aspect of understanding classifier learning is evaluating the relative influence of the spec-
tral bands and indices used by the model. The feature importance of the classifier shown in Fig-
ure ] represents the absolute contribution of each variable by measuring for each decision node
in the RF how much the not purity increased based on the respective variable. RF importance
is dimensionless and dataset-dependent; normalizing it will lose the magnitude of importance.
The importance rankings reveal clear regional differences in the importance of spectral features.
For instance, the most influential band in the Indonesian model is Band 11, whereas Band 1 and
Band 2 are the most critical for Ghana and Guatemala, respectively. When extending the anal-
ysis to include spectral indices alongside the bands, the feature hierarchy shifts. In particular,
Sli3 is more relevant than any other band for Ghana, suggesting that indices can better capture
class-specific spectral responses under certain conditions.

B |ndonesia
100+ I Ghana
I Guatemala

80+

60

Importance [1]

401

20+

SR A Ry

&

5 X X O O DD DS >D
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Figure 4: Comparison of the importance of bands and indices for the RF model by river.

Generalizability of the river plastic detection method

A key aspect determining the applicability and generability of the presented model is its transfer-
ability capacity across diverse environmental settings. Given the inherent variability in riverine
systems, it is essential to evaluate how well a model trained in one context performs when ap-
plied to another.

Successful transference to another area within the river

The first step in evaluating model transferability involved applying a model trained on one sec-
tion of the Citarum River in Indonesia to a separate downstream location. For this purpose, six
Sentinel-2 images were processed using all the spectral bands, and classification was carried
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out without any additional tuning. As shown in Figure [5 both visual assessment and quantita-
tive metrics confirm a highly successful transfer, achieving an overall accuracy of 99.5%. On
a class-by-class basis, performance remained robust, achieving F1-scores of 99.9% for Water,
99.3% for Vegetation, and 96.1% for Plastic. This underscores the model’s capacity to effectively
generalize in comparable fluvial settings, despite a slight rise in misclassification between Plastic
and Vegetation due to their shared spectral characteristics. Importantly, this validation was con-
ducted on a much larger dataset than that used for training, with thousands of pixels per class
— 7767 for Water, 3696 for Vegetation, and 669 for Plastic — compared to the few hundred or
fewer pixels typically available in the training zone.

Figure 5: Sentinel-2 image and classification map transferring the model within the same river.

Improving generalization between rivers with spectral indices

Transferring the model between different rivers presents a greater challenge due to the distinct
environmental and spectral characteristics of each region. To systematically evaluate inter-river
transferability, models were independently trained using the 10 available images per river dataset
and validated on the corresponding 10 images of the target river. The results shown in Table [2
highlight the limitations of model generalization under diverse conditions. Table [2|excludes trans-
fer within the same river, as retraining the models using the ten available images per river maxi-
mizes the use of spectral variability for learning. However, this approach leaves no independent
data for intra-river validation, making it unsuitable for evaluating without risking overfitting.

Using only the bands to train the models, solely two of the transfer scenarios achieved OAC
values exceeding 70%. Furthermore, repeated runs of the same model configuration yielded
inconsistent outcomes, demonstrating a high degree of variability and underscoring the lack of
robustness in these cross-domain applications. These findings suggest that while intra-river
transfer is feasible, inter-river generalization remains limited under current conditions and may
require tailored domain adaptation strategies or additional data harmonization to improve stability
and accuracy.

To enhance model performance across diverse riverine environments, spectral indices were
incorporated into the classifiers as additional input features. This decision was based on the
spectral analysis results, which exhibited that specific indices offered improved separability be-
tween classes. As shown in the second row of Table 2, the inclusion of spectral indices led to
a notable improvement in classification metrics across nearly all transfer scenarios. All model
transfers showed enhanced accuracy and F1-scores, except for the Guatemala-to-Ghana case.

In several cases, the gain exceeded 20%, underscoring the utility of combining spectral bands
with derived indices. The transfer from Guatemala to Ghana showed an improvement of nearly
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Table 2: River classification performance metrics for the transferred model (OAC/F1-score).

Train
Indonesia Ghana Guatemala
Tost Indonesia - 714%/61.3%  54.5%/43.5%
(Only Bands) Ghana 54.1% / 68.6% - 89.1% / 84.1%
y Guatemala  51.6%/62.1%  49.9%/57.1% -
Test Indonesia - 87.9% / 87.1% 85.4% / 77.2%
. Ghana 59.3% / 68.1% - 59.2% / 71.6%
(Bands +Indices) & ciomala  75.2%/84.2%  69.9%/85.8% i

30% in the Plastic class F1-score, highlighting the ability of indices to compensate for spectral
variability introduced by regional differences. Therefore, by combining the most predictive band
or index for each river in the RF classifier, the model achieves an average F1-score of 79% for
the plastic class. These results confirm that augmenting the feature space with targeted spec-
tral indices substantially improves the robustness and transferability of plastic detection models
across diverse fluvial systems.

Towards a general model

An alternative approach to improve the generality and robustness of the model involves training a
general model using a composite dataset that incorporates data from multiple river environments.
To this end, a combined training dataset was constructed using the first two images (ID 1 and
2) from each of the three rivers. Details of this combined dataset can be found in the Workflow
implementation section.

Several experiments have been conducted to evaluate the performance of the general model
under various conditions. The results shown in Table [3|confirm that incorporating spectral indices
generally enhances model performance. However, an even greater improvement is achieved by
selecting a minimal set of highly informative spectral features, obtained from the Band impor-
tance for the classifier section. This targeted feature selection reduces the introduction of noise
and redundancy from less relevant features, thereby improving classifier precision and stability.
Among the evaluated configurations, the selection of the most important spectral bands (B1, B2,
B11) yielded the highest classification accuracy for individual rivers. Nonetheless, this setup also
produced the lowest F1-score for the Plastic class in the second Indonesian location, indicating
a trade-off between peak accuracy and consistency across environments. The configuration
based on the most relevant features — combining bands and indices (B1, B2, Sl;3) provides the
best overall performance across datasets, offering a strong balance between generalization and
precision.

DISCUSSION

River plastic hotspot detection with good performance

This study demonstrates that accurate remote sensing of riverine plastic accumulation is feasible
using medium-resolution Sentinel-2 imagery, combined with strategic feature engineering and
cloud-based classification. By integrating spatial annotations from PlanetScope and spectral
indices tailored for plastic detection, we advance a transferable, reproducible, and operationally
viable approach to environmental monitoring within Google Earth Engine.
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Table 3: General model classification metrics.

Dataset

Indonesia Ghana Guatemala Indonesia 2 Average
Only OAC 94.2% 55.2% 86.9% 94.9% 82.8%
Bands Plastics F1 97.8% 60.6% 84.4% 89.8% 83.2%
Bands + OAC 95.8% 62.1% 89.3% 97.3% 86.1%
Indices Plastics F1 97.5% 64.5% 87.7% 95.8% 86.4%
B1 B2 B11 OAC 96.9% 100% 89.3% 93.1% 94.8%
Plastics F1 98.1% 100% 92.2% 58.6% 87.2%
OAC 96.6% 100% 88.1% 98.7% 95.9%
B1B2SH3  pjastics F1 97.9% 100% 91.8% 93.9% 95.9%

High classification accuracy was achieved in within-river applications, as shown by the 99.5%
overall accuracy in the intra-river transfer test on the Citarum River in Indonesia. The model per-
forms exceptionally well in the intra-river transfer scenario, even when evaluated on a significantly
larger number of pixels. This strong performance is likely due to the proximity of the two locations
on the Citarum River, which share similar environmental conditions, including vegetation types
and pollution characteristics, thereby facilitating effective model generalization. Additionally, the
use of a hand-curated training dataset likely contributed to this result by minimizing outliers and
ensuring high-quality, representative samples for each class.

Inter-river transfers, while more challenging, were significantly improved through the inclusion
of spectral indices, with several scenarios showing gains of over 20% in classification perfor-
mance. These improvements are closely linked to the spectral characteristics observed in each
river, where plastic, water, and vegetation display distinct reflectance patterns influenced by envi-
ronmental conditions such as turbidity, surrounding vegetation, and debris composition. Among
the indices tested, Sl;3;—specifically designed for plastic detection—consistently ranked as one
of the most important features across all locations, enhancing class separability. Additionally,
NDVI and PI contributed to classification accuracy in the Guatemalan dataset, where vegetation
in the patch introduced variability that these indices helped distinguish.

Prior studies have achieved high accuracy in coastal and marine contexts using multispec-
tral data and machine learning™®¢. However, only a few have addressed the generalizability of
these methods across geographically diverse sites. Our workflow builds on previous Sentinel-
2 approaches but differs in scope and transferability.%® achieved 80-90% accuracy using a RF
general model for coastal waters but requiring in-situ validation data and without the hydrological
complexities of river systems.?* employed spectral indices and temporal series analysis to mon-
itor floating debris dynamics and estimate the plastic cover at the subpixel level within a single
river system. On the Tisza,? trained several ML models using VHR-assisted labels, with RF,
Artificial Neural Network (ANN), and Support Vector Classifier (SVC) achieving the best perfor-
mance. While validation F1 was high (SVC 0.94, ANN 0.93, RF 0.91), generalization on larger
unseen data dropped to medium-poor (RF 0.69, SVC/ANN 0.62) due to single-river dependence.
Our inter-river plastic F1 = 79% is therefore competitive under unseen data, while our intra-river
tests preserve very high accuracy.

Our work demonstrates that, even with Sentinel-2’s moderate resolution, when integrated
with PlanetScope-based ROI annotation, meaningful detection of plastic accumulations is pos-
sible, especially when combined with targeted feature selection and cloud-based processing. To
support scalability and broader impact, we provide a GEE-based application called Plastic River
Classifier (https://plastic-monitoring.projects.earthengine.app/view/river-plastic-m
onitoring) that allows users to apply the trained classifier to rivers globally. This app serves as
a first step toward operational use of our classifier and supporting wider plastic monitoring using
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generalized models.

Are we really detecting plastic?

Determining whether the detected targets are truly plastic remains a complex but critical ques-
tion. In practice, what we identify as “plastic patches” are often aggregations of heterogeneous
debris, including various types of plastics, floating vegetation, large wood, and other anthro-
pogenic materials®’2¢. These mixtures can vary significantly between rivers and even across
seasons within the same location”=, This result highlights the importance of awareness of
mixed values and how this may impact the training process and classification outcomes. It is
important to emphasize that quantitative estimation of plastic concentration is beyond the scope
of this study, we deliberately focused on well-documented polluted rivers where multiple inde-
pendent studies have confirmed extensive macroplastic accumulation940-42,

Visual inspections and spectral variability in Indonesia indicate accumulations composed of
mixed waste, where plastics are mixed with water hyacinths, organic material, and other types
of litter. This composition results in increased heterogeneity in the spectral signature, yet char-
acteristic plastic responses remain discernible. In Guatemala, the challenge lies in the dense
vegetation, where shadows cast by overhanging canopy elements alter the reflectance profiles
of surrounding pixels. The narrow geometry of the Odaw river in Ghana often results in mixed
pixels that encompass both the water channel and adjacent land, thereby diluting class sep-
arability. The coarse spatial resolution of Sentinel-2 (10 x 10 m) exacerbates the problem of
non-pure pixels, as plastic patches share spectral space with surrounding materials and water.
Despite these limitations, visual inspection of the images and spectral patterns supports the in-
terpretation that many of the targets identified are mostly plastic. Spectral indices such as Sl3
have further proven effective in enhancing class separation.

Beyond validating whether the detected targets are truly plastic, our approach also opens
new possibilities for understanding how debris accumulates and redistributes within river sys-
tems over time. Our methodology has proven capable of differentiating between anthropogenic
and organic materials in rivers. By applying this workflow across multiple rivers and seasons,
future analyses could reveal how hydrological dynamics, vegetation growth, and flow variations
influence the location and persistence of floating debris hotspots. Such insights would contribute
to a more comprehensive understanding of river plastic dynamics, enabling better planning of
cleanup operations, improved prediction of accumulation zones, and more efficient allocation of
mitigation resources.

Generalization and scalability

Model generalization across diverse river systems is a critical step toward global applicability of
remote sensing-based plastic monitoring. While intra-river generalization yielded strong results,
inter-river model transfer exposed limitations due to variations in plastic patch composition, eco-
hydrological conditions, and technical limitations, such as the sensor’s spatial resolution. The
current selection of rivers includes a wide range of features. In Indonesia, high turbidity and
the co-occurrence of plastics with floating vegetation create mixed spectral signals that increase
classification uncertainty??. In Guatemala, clearer water improves class separability, although
canopy shadows from riparian vegetation locally reduce accuracy™®. In Ghana, narrow chan-
nels and nearby built-up areas cause pixel mixing, limiting detection precision4®. We encourage
follow-up studies in other river systems to also explore and implement the effect of other factors.
Nevertheless, integrating spectral indices opens a new avenue for performance enhancement
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tailored to class separability. Overall, the generalization performance can be considered pos-
itive, especially given the diversity and complexity of the test sites. In particular, the lowest
results are consistently observed when the models are tested on the Ghanian dataset, which
is expected given its mixed pixels with surrounding land features. These edge effects compli-
cate accurate classification, highlighting the need for additional strategies—such as unmixing or
spatial filtering—to further enhance model generalization in such challenging settings.

The general models trained combining images from several rivers improved performance,
suggesting that greater training data diversity enhances generalization capabilities. This finding
aligns with the literature advocating heterogeneous datasets for remote sensing model devel-
opment™®. Integrating spectral indices into the classifier, along with strategic band reduction,
demonstrably enhances classification performance while minimizing the volume of acquired in-
formation. Scaling this approach globally would require the dataset to include more rivers under
different conditions and to incorporate ground-reference data for validation.

Another direction for improving the scalability of our approach is to simplify the manual an-
notation step required for model training. Although unsupervised and self-supervised learning
methods are promising, their accuracy currently remains below that of supervised approaches.
Nonetheless, recent research is moving in this direction:4? introduced a Naive Bayes classifier
that performs well with limited training samples, and** proposed the SAMSelect algorithm to
interpret floating marine debris from Sentinel-2 using a small annotated dataset. Such devel-
opments could eventually reduce the dependency on high-resolution commercial imagery and
enable semi-automated generation of training data for large-scale.

Limitations of the study

Despite the promising results of our approach, several technological limitations currently hinder
its broader operational deployment. One significant challenge is harmonizing data across mul-
tiple satellite platforms. Aligning imagery from Sentinel-2 and high-resolution sources, such as
PlanetScope, for the same date and location proved particularly challenging, yet it is essential
for accurately delineating training and validation ROls. In highly dynamic rivers, plastic patches
can shift position completely within a few hours due to flow velocity or wind, which may introduce
spatial discrepancies between acquisitions. To minimize this effect, all images were carefully
reviewed, and only those showing consistent patch alignment were used for annotation and
training. Furthermore, manual ROl annotation ensures high-quality training data, but it is time-
consuming and requires visual expertise, limiting the scalability of model development across
new regions. In the future, semi-automated or unsupervised pre-screening methods could help
mitigate these limitations and further streamline the annotation process.

Additional issues include cloud cover and atmospheric interference, which remain persistent
obstacles in optical remote sensing. Semi-transparent clouds and cast shadows can introduce
spectral noise, which affects both classification accuracy and confidence in predictions. Vege-
tation and canopy cover can also obscure the river surface, particularly in tropical or forested
regions, while seasonal differences such as snow, ice, or extreme illumination angles modify re-
flectance and complicate the interpretation of spectral signals. During the night, optical systems
are inherently limited, restricting monitoring to daylight conditions. Sentinel-2’s 10-meter resolu-
tion, while sufficient for identifying larger accumulations, struggles to detect smaller or dispersed
patches, especially in narrow or vegetated channels. Furthermore, near-real-time applications
are constrained by the temporal resolution and latency of Sentinel-2 data. Sentinel-2 revisits the
same location approximately every five to ten days at the equator (with shorter intervals at higher
latitudes), and Level-2A images are typically released 24—48 hours after acquisition. Therefore,
for short-term pollution events, this satellite may not provide the necessary temporal frequency.
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To overcome some of these limitations, a multi-sensor approach offers substantial potential.
Combining optical data from satellites like Sentinel-2 and PlanetScope with radar imagery from
platforms such as Sentinel-1. Radar systems, which are unaffected by cloud cover or light con-
ditions, and are capable of detecting surface texture and moisture changes, can complement
optical observations. This can provide significant improvements in temporal coverage and in
persistently cloudy regions such as Southeast Asia. Furthermore, emerging sensors, such as
ESA’s CHIME (Copernicus Hyperspectral Imaging Mission), promise to deliver high-resolution
hyperspectral data, enabling more detailed spectral discrimination of plastics. Additionally, the
increasing availability of CubeSat constellations, such as those operated by Satellogic and Black-
Sky, could provide supplementary high-frequency, high-resolution observations.

Future directions

This study establishes a semi-automated, cloud-based workflow for riverine macroplastic detec-
tion using multispectral satellite data. research should build on this foundation by advancing
both fundamental, computational, and practical aspects. A key aspect arising in this study is that
band selection enhances classification performance. However, these techniques are not avail-
able in the native language of GEE. Developing feature selection techniques compatible with
GEE should be explored, as well as exploring using other computational environments for our
methodology.

Similar to previous studies, we found that many pixels contain mixed materials, resulting in
mixed spectral signatures. Spectral unmixing methodologies may be explored in the future to
better detect the presence of plastics in such situations. Spectral databases of plastics and
other materials are key for this. The current databases"23'” cover only limited plastic polymers,
item types, and states of degradation and weathering, and should be expanded for global river
environments. Unmixing techniques are computationally intensive and currently limited in GEE.
Future improvements in cloud computing may enable its practical application for refining plastic
detection by accounting for sub-pixel heterogeneity.

In this study we limited the detection to whether plastics were present in pixels or not. Future
fundamental work may also be used to identify the minimum detectable item size and plastic
concentration of current and future satellite sensors. Those insights can be used to develop
methods to move from detection to quantification. Field-target experiments will be an important
step towards understanding the effects of type size and concentration on detectability. In the
marine domain,“* have already managed to test different floating litter targets and demonstrate
the detectability using Sentinel-2.2% estimate plastic cover at the subpixel level within a single
river system, employing spectral indices and temporal series. For rivers,"® reported results from
a pilot target experiment using polyester (PES) sheets and PET bottle targets. Here, the item
density of 8 items/m? was not sufficient for detection using Sentinel-2. The sheets of 1x30 m?
and were detected with however. Future work should extent such experiments by testing (i)
commonly found items in rivers globally, (ii) a wide range of item densities, including mixtures
with other materials, and (iii) both riverbank and river surface backgrounds.

Another avenue towards more accurate quantification using satellites is parallel collection
of ground truth data. We recommend designing calibration experiments in rivers with varying
characteristics, and collecting in situ data on plastic concentration and composition at the river
surface and on riverbanks. Additional spectral measurements can be taken using handheld
spectrometers, or multispectral cameras with the same bands as Sentinel-2 (or other satellites).
We specifically encourage to focus on areas with active collection of plastics from rivers, ei-
ther through volunteer efforts along riverbanks or direct collection from the river surface. Future
developments should also integrate collaboration with citizen science initiatives and local stake-
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holders to identify plastic hotspots. Partnerships with programs such as Plastic Pirates*® and
Clean Rivers*” can provide complementary in-situ validation data at regular intervals, thereby
improving temporal coverage and calibration accuracy. In addition, initiatives such as the Plastic
Cup along the Tisza River® maintain consistent, georeferenced records of polluted areas that
could serve as valuable ground truth for model validation and refinement, improving long-term
river plastic monitoring.

Finally, we encourage to use our methodology for long-term and large-scale time series anal-
ysis to better understand the factors that drive river plastic and retention. Fundamental studies
to date mostly rely on limited measurements in space and time. Our remote sensing-based ap-
proach may extend data to multiple years, and covering entire river courses. Combining remote
sensing-based plastic detection with data on hydrology, river characteristics, and anthropogenic
factors may shed new light on the driving mechanisms of plastic entry, transport, and retention
in rivers. Such efforts will also improve the scalability, and generalization of our plastic hotspot
detection method to other river environments globally. Furthermore, the proposed methodology
could be extended to various terrestrial and coastal applications, including monitoring anthro-
pogenic debris on shorelines, land-based dumps, and landfill areas, but also for other classi-
fication tasks such as vegetation mapping, land-cover change detection, and water-quality or
sediment classification in aquatic environments.

Conclusion

This study presents a scalable, cloud-based workflow for detecting macroplastic hotspots in
rivers using freely available Sentinel-2 imagery. By combining high-resolution PlanetScope an-
notation with spectral feature engineering and Random Forest classification within Google Earth
Engine, we demonstrate the feasibility of transferring trained models across distinct river sys-
tems. Our results demonstrate high intra-river accuracy (up to 99.5%) and promising inter-river
transferability (F1-score of 79%) when utilising targeted spectral indices, such as SI13. These
results are competitive and surpass those reported in similar state-of-the-art studies, such as#,
who achieved an F1 score of 94% for intra-river and 69% for inter-river generalization. These
findings support the development of generalizable classifiers that are robust to environmental
variability and pixel mixing challenges, especially in complex fluvial settings. The workflow’s
integration into an open-access GEE application ensures operational utility and reproducibility,
offering researchers a practical tool for monitoring plastic pollution. Future work should focus on
expanding annotated training datasets, improving spectral unmixing techniques, and enhancing
spatial resolution to enable finer-scale detection and quantification. Our approach contributes
to the growing field of remote sensing for environmental monitoring by operationalising plastic
detection at the river scale, bridging the gap between research and field-deployable solutions.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and will be fulfilled by the
lead contact, Ambar Pérez-Garcia (ambar.perezgarcia@wur.nl).
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Materials availability

The study generated the Plastic River Classifier GEE application: https://plastic-monitorin
g.projects.earthengine.app/view/river-plastic-monitoring.

Data and code availability

 All data reported in this manuscript is available at Mendeley Data: https://data.men
deley.com/preview/tczwvtzmys?a=476f97c0-e367-4d52-8fc7-edc79bb4f4b9 (DOI:
10.17632/tczwvtzmys.1)

» The source code is available from https://github.com/AmbarJade/plastics-hotspot
s—identification.git.

» Any additional information required to reanalyze the data reported in this paper is available
from the lead contact upon request.
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STAR METHODS

Method details
Overall methodology.

This study developed a semi-automated, cloud-based workflow to detect macroplastic hotspots
in river systems using multispectral satellite imagery and machine learning. The method inte-

grates high-resolution commercial imagery for manual annotation and medium-resolution Sentinel-

2 data for classification within the Google Earth Engine (GEE) environment and using Python,
version 3.8.10 (via Jupyter Notebook).

The design of our methodology builds upon earlier efforts that applied Sentinel-2 data and ML
models for detecting floating or stranded plastics. In particular,?® developed an automated ma-
rine floating plastic detection system using Sentinel-2 data, ML models, and indices such as FDI
and PI, achieving accuracies of 80—-90% in the coastal waters of the Mediterranean. However,
in-situ validation data were required to train the models, and unlike marine environments, river
systems pose additional challenges due to diverse vegetation types, variable water composition,
and turbidity conditions.?* demonstrated the utility of Sentinel-2 time-series composites for track-
ing inland debris persistence using GEE and spectral indices within a single river system.* used
VHR images to identify litter spots and tested the generalization of ML classifiers on unseen data
under varying hydrological conditions, achieving an F1-score of 69% with RF. These studies in-
spired our approach but also revealed two key gaps: the lack of better cross-river generalization
and the limited reproducibility of local workflows.

To address these issues, we implemented a cloud-based pipeline in Google Earth Engine
that couples high-resolution manual annotation with Sentinel-2 spectral features and optimized
band selection, enabling a scalable and generalizable plastic-detection framework. The ap-
proach includes the following steps: (1) locating the hotspot, (2) delineating the ROls in high
spatial resolution images, (3) exporting them to the cloud to apply them to high spectral resolu-
tion images, and (4) training a machine learning classifier in the cloud (Figure [6). In this study,
a plastic hotspot is defined as an area where the surface concentration of visible plastic debris
is notably higher than in its surroundings, reflecting localized accumulation driven by hydrologi-
cal, geomorphological, or anthropogenic factors®. The workflow uses satellite remote sensing,
integrating high-resolution imagery, spectral analysis, and cloud-based machine learning. The
ultimate goal is to facilitate large-scale and scalable monitoring of plastic pollution across diverse
river systems globally.

The first step involves locating macroplastic accumulations, or hotspots, in rivers using high
spatial resolution images. This process is entirely manual, relying on local knowledge, satellite
imagery, and supporting information from news reports and community observations to identify
plastic patches. The spot can be corroborated via Google Earth Pro, which provides a user-
friendly interface for visually screening satellite imagery across different periods. In the second
step, we manually define regions of interest (ROIs) within these hotspots using VHR imagery,
such as SkySat (0.5 m/px) or Dove (3 m/px) from PlanetScope“®. These serve as spatial ground-
truth references for subsequent spectral analysis and the area where the classifier will be applied
is also outlined. The third step entails extracting spectral information by uploading the spatially
annotated ROls to cloud systems. The Sentinel-2 images will be temporally aligned with the
high-resolution PlanetScope images in which polygons were delineated to avoid misclassifica-
tions. This alignment was critical to minimize misclassifications, although challenges such as
water-driven displacement of plastic between acquisitions were noted and factored into data in-
terpretation. This allows for the precise extraction of high spectral resolution data corresponding
to accurately located macroplastic patches. Finally, in the fourth step, we conduct a spectral

21

667

668

669

670

671

672

673



Define regions of Extract spectral Cloud-based data
interest (ROIs) with information by processing and
high spatial transferring ROls to machine learning
resolution images spectral images classification

Locating hotspots
with high spatial

resolution images

PlanetScope = 05-3m/px Sentinel-2 — 10 m/px

Figure 6: Plastic hotspot detection methodology: (1) locating the hotspot, (2) delineating the
ROls in high spatial resolution images, (3) exporting them to the cloud to apply them to high
spectral resolution images, and (4) training a machine learning classifier in the cloud. This figure
don’t have scale because it is for illustrative purposes.

analysis and machine learning classification in the cloud system. Using the labelled pixels, we
train a classifier using all the spectral bands and some spectral indices. Model training and test-
ing are fully executed within GEE, leveraging cloud infrastructure to process large volumes of
data efficiently and without the need for local storage. This methodology is tested across three
different rivers—located in Indonesia, Guatemala, and Ghana—representing varied geographi-
cal and environmental conditions. For each river, an individual classifier is trained and evaluated,
followed by inter-location and cross-river transfer experiments. This approach enables the con-
struction and evaluation of a generalizable model that can identify plastic accumulations under
various scenarios.

Study areas and datasets.

This study focuses on three rivers located in distinct geographic and environmental contexts: the
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Citarum River in Indonesia (6.92°5, 107.48° F), the Motagua River in Guatemala (14.76° N, 90.50°W), 725

and the Odaw River in Ghana (5.54° N, 0.22°W). These rivers were selected due to their known
high levels of macroplastic pollution and their contrasting environmental characteristics*?. Sev-
eral studies have confirmed these systems as significant plastic accumulation hotspots 24142,
The Odaw flows through the densely populated national capital of Accra, the Citarum faces both
high levels of plastics and floating water hyacinths, and the Motagua is impacted by a dam.
Together, they represent a diverse set to evaluate model performance and transferability under
varying landscape and spectral conditions. Table S1. [Sentinel-2 dataset with the number of
pixels identified per class.] contains the information of the Sentinel-2 dataset used to train and
test the model. Table S1. [Sentinel-2 dataset with the number of pixels identified per class.]
also includes the number of pixels per class obtained with the polygons delineated using the
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high-resolution imagery, as these are relevant for subsequent sections.

Each study site presents unique environmental and remote sensing challenges. The Citarum
River (Indonesia) flows through densely populated urban areas, often accumulating floating
waste mixed with organic debris and sediments. This river often has turbid water, and occa-
sionally small sand islands form that can support some vegetation. This mixture results in com-
plex spectral signals, especially for the Plastic and Vegetation classes. In contrast, the Motagua
River (Guatemala) traverses a more forested landscape, where dense canopy cover introduces
frequent shadows that influence pixel reflectance. The Odaw River (Ghana) presents one of the
most challenging conditions due to its narrow channel width, which often leads to pixel mixing
with adjacent urban surfaces.

Sentinel-2 imagery, provided openly by the European Space Agency (ESA), offers global
coverage with revisit times of 5 days at the equator and has a spatial resolution of 10 m4. The
atmospherically corrected Level-2A Sentinel-2 products, generated using the Sen2Cor proces-
sor, provide surface reflectance values suitable for land-based applications. While the spectral
information is extracted from Sentinel-2 images, spatial information relies on PlanetScope and
SkySat imagery. These are commercial products with near-daily revisit capability, offering very
high spatial resolution (0.5-5 m)4®. However, access to PlanetScope and SkySat data requires
a subscription or license, which can limit scalability. Through a Campus License we had access
to the Planet image archives. During the annotation process, both the RGB and Near-Infrared
(NIR) bands from PlanetScope were examined to verify ROl composition.

Despite efforts to temporally align Planet and Sentinel imagery within a two-day window,
several challenges emerged across all datasets. One major issue was the displacement of
plastic patches caused by water flow or wind, resulting in visible differences between images
taken just a few hours apart. Additionally, changes in solar illumination angles introduce shadow
patterns, especially under vegetated riverbanks, such as in Guatemala, which complicates class
identification. Cloud cover, particularly prevalent in the Indonesian dataset, further introduced
noise and data gaps, with semi-transparent clouds or haze affecting spectral accuracy. These
factors underscore the difficulty of synchronizing spatial and spectral data across platforms.

Workflow implementation.

The workflow consists of four main stages: (1) identification of visible plastic accumulation
hotspots through manual inspection of high-resolution imagery and supporting field information;
(2) delineation of ROls in PlanetScope imagery; (3) temporal alignment of ROIs with Sentinel-2
scenes within a few day window (depending on the river dynamics); and (4) supervised classifi-
cation using Random Forest (RF) models in GEE. The training polygons were manually defined
and uploaded to GEE. The workflow was implemented entirely in the cloud using the native GEE
classifier ee.Classifier.smileRandomForest with 200 decision trees.

To identify large plastic patches for training the algorithm, we focused on rivers known for high
plastic pollution levels, leveraging common accumulation zones such as bends, urban discharge
points, and informal dumping sites. Polygons representing the ROIs are manually annotated
using high-resolution PlanetScope imagery within QGIS and then uploaded to Google Earth
Engine, where they are matched with Sentinel-2 images. A total of ten Sentinel-2 images per
river were selected, each temporally aligned with the PlanetScope reference imagery. The ten
images for each river correspond to different dates at the same location, where hotspots have
been confirmed. This pairing strategy enables the extraction of high-spectral-resolution data from
spatially accurate regions, thereby enabling precise training of the classification algorithm. The
widely used Random Forest (RF)*? classifier employs ensemble learning to combine predictions
from multiple decision trees®".
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This multi-layered workflow, built on the foundation of cloud-based processing and optimised 73
spectral input, aims to reduce computational load while increasing the accuracy and reliability of = 7ss
macroplastic detection. To support broader application and scalability, we developed an interac- s
tive GEE application that enables users to apply the trained model to Sentinel-2 imagery from s
any location. 787

Spectral features and indices. 788

Spectral indices are combinations of bands that aim to highlight a property or characteristic of a 7
surface by leveraging the contrasting spectral reflectance between one property or characteristic 750
and another. We used the Normalized Difference Vegetation Index (NDVI), the Sentinel Index 1- 7o
3 (Sli3)), the Plastic Index (P1), and Floating Debris Index (FDI) in our work. Below these indices 7

are briefly explained. 793
Normalized Difference Vegetation Index (NDVI) 794
The Normalized Difference Vegetation Index (NDVI) combines bands in the red and NIR 7

range to highlight vegetation health: 796

RNIR - RRED
NDVI = 1
Rnir + RrED )

The study by Carlson and Ripley®2 shows that NDVI values are indeed correlated with frac- 7
tional vegetation cover, such that NDVI is an appropriate method for estimating floating vegeta- 7
tion cover in water bodies. In addition, the study highlighted that NDVI is sensitive to detecting 7ss
changes in fractional vegetation cover when the vegetation cover is less than 100% in the region sw
of interest. Since full vegetation coverage in river bodies is not a common occurance, applying so

NDVI in this study to identify floating vegetation is highly opportune. 802
Sentinel Index 1-3 (Sl;3) 803
Recently, the Sl;3, spectral index combining bands one and three of Sentinel-2 in a normal- o

ized difference, demonstrated to be effective for plastic detection from space’®. 805

Rereen — Ragrosor
Sha Rereen + Ragrosor @)
Plastic Index (PI) 806
The Plastic Index (P1)*® was introduced aiming to distinguish plastic litter in the water bodies o
by leveraging the high reflectance of plastic in the NIR wavelengths: 808
pr—_hn (3)
Rnir + RreD

The study by Themistocleous et al. (2020) validated the use of plastic float identification s
using spectral signatures and UAV aerial images, confirming that Pl was the optimal index for s
identifying floating plastic in water bodies. Here, A\yr represents the near-infrared wavelength s

(e.g., 859nm) and Aggp represents the red wavelength (e.g., 645nm). 812
Floating Debris Index (FDI) 813
The Floating Debris Index (FDI)*® enhances the detection of floating debris patches in Sentinel- s

2 imagery: 815

FDI = Rnmr— R'nir (@)
R'nir = Rgpe+ (Rswirt — Rrea) - —(iixﬂijffi,’j;) -10

The FDI quantifies the difference between the observed NIR reflectance and a baseline re- s
flectance derived by linear interpolation between the adjacent RE2 and SWIR1 bands. This s
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approach minimizes atmospheric and observational obstacles, such as glint, aerosols, and solar
angle. As a result, it enables the detection of floating materials, including plastic debris, even in
the presence of thin clouds or haze.

Training and validation strategy.

For each river, ten Sentinel-2 images were selected and split into training (IDs 1-6) and test
sets (IDs 7—10). The models were initially trained using the 12 bands from L2A Sentinel-2. The
total number of training pixels per class is 702, 79, and 659 in Indonesia, 251, 130, and 332 in
Guatemala, and 201, 0, and 302 in Ghana, respectively, for the water, vegetation, and plastic
classes. For the test class, we have 1095, 167, and 788 in Indonesia, 240, 159, and 261 in
Guatemala, and 134, 0, and 124 in Ghana.

To evaluate generalization capacity, the model is trained using two images (IDs 1 and 2) from
each river and validated on a test set comprising three images: one from each river (ID 7) and
an additional location for the Citarum River in Indonesia (ID 11) with a much larger classification
area. Cross-river transferability was evaluated by training on one river and testing on another.
Intra-river validation was performed on an independent section of the Citarum River (ID 11),
which is larger for testing and has 7,767 pixels for water, 3,696 for vegetation, and 669 for plastic.

Feature selection. To improve classification performance, the spectral indices listed pre-
viously—known to enhance class separability—were also incorporated as input features. The
relative importance of each spectral band and index was computed using the RF feature im-
portance metric in GEE. The most relevant features (B1, B2, and Sl;3)) were used to construct
a reduced general model that achieved improved balance between precision and robustness
across rivers due to the reduction of redundancy and spectral noise.

Quantification and statistical analysis

Model performance was quantified using Overall Accuracy (OAC) and F1-score metrics, calcu-
lated from confusion matrices. No randomization, blinding, or inferential statistics were required
as the study relied on satellite data and deterministic classification. All statistical parameters,
including per-class F1-scores, are reported in the Results section and Tables 1-3.

Additional resources

The trained classifier and public application are available at: Plastic River Classifier: https:
//plastic-monitoring.projects.earthengine.app/view/river-plastic-monitoring
Further details and open-source code is available through the corresponding author.
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Research Highlights

e Developed a GEE-based workflow for river plastic detection using
Sentinel-2 data.

e Used PlanetScope imagery to generate training ROIls for classifier
development.

e Achieved up to 99.5% intra-river accuracy and 79% F1-score in inter-river
transfer.

e Released an open-access application for global Sentinel-2 based plastic
monitoring,
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KEY RESOURCES TABLE

Key resources table

REAGENT or RESOURCE \ SOURCE \ IDENTIFIER

Deposited data

Polygons from Sentinel-2 images \ This paper; Mendeley Data \ DOI: 10.17632/tczwvtzmys.1

Software and algorithms

Plastic River Classifier — Google Earth | This paper https://plastic-

Engine application for global use monitoring.projects.earthengine
.app/view/river-plastic-
monitoring

Google Earth Engine (GEE) Google / Earth Engine Team | https://earthengine.google.com/

Python, version 3.8.10 (via Jupyter Python Software Foundation | https://www.python.org

Notebook)

Source code for data processing This paper; GitHub https://github.com/AmbarJade/p
lastics-hotspots-identification.git




