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SUMMARY 13

Plastic pollution threatens terrestrial and aquatic ecosystems, and rivers play a central role in 14

transporting and retaining plastics across landscapes. Effective mitigation requires scalable 15

methods to identify riverine plastic accumulation hotspots. Here, we present a semi-automated, 16

cloud-based pipeline that integrates satellite remote sensing and machine learning to detect 17

river plastic hotspots. High-resolution PlanetScope imagery is used to annotate training regions, 18

which are transferred to Sentinel-2 multispectral data to train Random Forest classifiers within 19

Google Earth Engine. The approach is evaluated across three contrasting river systems—the 20

Citarum (Indonesia), Motagua (Guatemala), and Odaw (Ghana)—to assess transferability un- 21

der diverse environmental conditions. Intra-river transfer achieves up to 99.5% accuracy, while 22

optimized inter-river transfer yields a plastic F1-score of 79%, outperforming previously reported 23

results of 69%. By providing an open-access Google Earth Engine application, this work enables 24

reproducible, large-scale monitoring of riverine plastic pollution and supports the development of 25

global, satellite-based assessment strategies. 26

KEYWORDS 27

Remote sensing, Macroplastic detection, machine learning, Google Earth Engine, Sentinel-2, 28

PlanetScope 29

INTRODUCTION 30

Plastic pollution is a growing global concern that threatens terrestrial and aquatic ecosystems, 31

species, and human health and livelihood1,2. Through initiatives such as the Global Plastics 32

Treaty, governments are committing to the reduction of environmental plastic pollution3. To effec- 33

tively reduce plastic pollution, understanding the sources, pathways, and sinks of plastic pollution 34

is key4. Rivers connect the terrestrial and marine environment, and therefore play an essential 35

role in the global distribution of plastics. Plastics can be retained within rivers for extended peri- 36

ods and may be exported to the sea. Plastic transport and retention dynamics strongly depend 37

on the plastic item properties and river characteristics5,6. Jointly they determine whether plastics 38

remain mobile and travel long distances, or accumulate on floodplains, within the sediment or 39

around coastal zones7. Plastic transport and retention dynamics strongly depend on the plastic 40
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item properties and river characteristics5,6. Together, these factors determine whether plastics 41

remain mobile and travel long distances, or accumulate on floodplains, within the sediment or 42

around coastal zones7. Reliable monitoring of plastic pollution across river compartments is cru- 43

cial for identifying accumulation hotspots, establishing baseline pollution levels, and evaluating 44

the impact of plastic reduction strategies8,9. However, in situ monitoring of plastic pollution can 45

be labour and cost-intensive and often unsuitable during and after extreme events. 46

Satellite remote sensing offers a potential avenue to upscale plastic detection efforts10 due 47

to the distinct spectral reflectance of plastic compared to water, vegetation, sand, and other 48

materials11. The spectral signatures also vary with polymer type and state of weathering12–14. 49

Multi- and hyperspectral imagery has been successfully used to detect and classify plastics un- 50

der laboratory and field conditions, often using (combinations of) spectral indices15–18. Although 51

the detection can be affected by several physical and environmental constraints such as cloud 52

cover, seasonal variability, and illumination conditions, various satellite remote sensing–based 53

approaches have been developed for direct and indirect detection of plastics on land, in the 54

ocean, and in rivers. 55

In recent years, significant progress has been made in satellite-based detection of plastic in 56

both inland and coastal environments19,20. Optical and multispectral satellite data, particularly 57

from Sentinel-2, have been widely applied to detect floating or stranded plastics using spectral 58

indices and machine learning models. Several studies have focused on marine and coastal set- 59

tings21–23, while others explored inland or riverine scenarios. Among these,24 demonstrated the 60

potential of Sentinel-2 time series for detecting floating debris on inland waters, and25 applied 61

supervised machine learning with Very High Resolution (VHR)-assisted labeling to map river- 62

ine litter, discussing the 10 m spatial resolution limitation for small debris patches (< 100m2).26
63

validated an adjusted Plastic Index for highly polluted rivers, and regional-scale analyses have 64

identified waste hotspots and river blockages using multispectral data27. Hybrid approaches in- 65

tegrating citizen science and remote sensing have also emerged, linking satellite observations 66

with in-situ river monitoring28. 67

Building on these developments, recent advances in cloud-based processing have enabled 68

the scalable implementation of such methodologies. Platforms such as Google Earth Engine 69

(GEE)29 and Microsoft Planetary provide access to extensive multi-temporal satellite archives 70

and powerful cloud computing resources, allowing large-scale execution of machine learning 71

algorithms without the need for local data storage30–32. In plastic monitoring, GEE has already 72

been employed to map floating plastics in rivers19 and in marine environments33. 73

This work evaluates the potential of a semi-automated pipeline for detecting plastic patches 74

and hotspots in river systems, integrating satellite imagery and machine learning within a re- 75

producible workflow. The core classification and detection process is implemented in Google 76

Earth Engine (GEE), enabling a scalable application using Sentinel-2 multispectral data. High- 77

resolution PlanetScope imagery is used in the initial, external step to manually annotate train- 78

ing regions of interest (ROIs), enhancing spatial precision. Although this annotation step is 79

not automated and requires access to commercial data - limiting its scalability - it serves as a 80

one-time calibration phase. Once ROIs are uploaded to GEE, the classification pipeline can 81

be generalized and applied globally using pre-trained models. Auxiliary field-based or observa- 82

tional data are used in this study to interpret and validate results, but they are not part of the 83

automated pipeline. We apply our methodology to three river systems with varying characteris- 84

tics: the Citarum River in Indonesia, the Motagua River in Guatemala, and the Odaw River in 85

Ghana. Each river represents different environmental, climatic, plastic hotspot composition, and 86

social contexts. We evaluate both the classification performance and transferability of the mod- 87

els across sites. We also used our methodology for a time series analysis to produce hotspot 88

maps, and developed a general model with reduced features that support future field monitoring 89

and intervention planning. We present a companion GEE application that allows end-users to 90
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apply the trained general model on new rivers worldwide, directly using Sentinel-2 imagery. This 91

operational tool extends the study’s impact by enabling the scalable application of a validated 92

model, providing a bridge between research and field-ready plastic monitoring. 93

The key innovation of this study lies in its approach to building and evaluating generalizable 94

river plastic classifiers based on the synergy between spatial detail and spectral richness. By 95

combining expert-led manual annotation from high-resolution imagery with systematic feature 96

analysis and machine learning in a cloud environment, we demonstrate that high-performance 97

plastic detection is possible even with medium-resolution Sentinel-2 data. Previous studies have 98

demonstrated the potential of remote sensing for plastic detection in aquatic systems34. A re- 99

cent study estimated fractional plastic coverage using high-resolution PlanetScope and Skysat 100

imagery19, while others exploit spectral indices for plastic detection35. These efforts highlight 101

the importance of both spatial detail and spectral analysis in detecting plastic features. Build- 102

ing on this foundation, our work integrates these insights into a scalable, cloud-based workflow 103

tailored specifically for riverine environments. We use high-resolution PlanetScope imagery to 104

annotate training data, and leverage Sentinel-2 multispectral data within Google Earth Engine for 105

classification. Our approach extends the methodology to diverse river systems by incorporating 106

spectral indices, band importance analysis, and inter-river transfer tests. This is the first study to 107

combine high spatial and spectral information in GEE, demonstrating its feasibility for developing 108

general plastic detection models while also identifying current limitations and paths forward for 109

model robustness and scalability. 110

RESULTS 111

For clarity, in the following sections, we refer to each study site by the name of its country 112

(Indonesia, Guatemala, and Ghana). However, the results correspond to specific river sec- 113

tions—Citarum, Motagua, and Odaw—where plastic accumulation hotspots have been previ- 114

ously documented and described in detail in Section ??. 115

Spectral characteristics of river plastic 116

In the first experiment, we analyzed the spectral profiles of the three target classes (Plastic, Wa- 117

ter, and Vegetation) across the riverine environments in Indonesia, Guatemala, and Ghana. The 118

first row of Figure 1 presents the mean reflectance spectra, highlighting overall similarity among 119

classes with region-specific variations. In Indonesia, both the Plastic and Vegetation classes 120

exhibit a higher standard deviation, indicating greater spectral heterogeneity. This variability 121

likely arises from mixed pixels containing both plastic debris and surrounding organic material. 122

In Guatemala, spectral curves show lower intra-class variability, and Vegetation displays a pro- 123

nounced peak in the near-infrared region, suggesting the presence of healthy flora. Ghana yields 124

highly similar spectral responses for Plastic and Water. This convergence is attributed to the nar- 125

row geometry of the river, where pixel mixing reduces the ability to distinguish between surface 126

materials. 127

To improve class separability, several spectral indices have been implemented (second row 128

of Figure 1). Among these, SI13 offers the most consistent separation, being the only one that 129

can improve discrimination in Ghana. NDVI and PI perform well in Guatemala, which overall 130

presents the highest separability across all computed indices. NDVI is also the index that best 131

distinguishes water from other classes in both Indonesia and Guatemala. In contrast, the FDI 132

lacks discriminatory capacity, indicating limited applicability for detecting plastic accumulations 133

in fluvial environments. To better assess the spectral separability of the three classes, the NDVI 134
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a) Indonesia b) Guatemala c) Ghana

Figure 1: Spectral analysis of datasets. In the first row, the mean spectra with their standard
deviation, and in the second row, the indices boxplot.

is plotted against SI13, as these two indices demonstrated the highest discriminative power and 135

can complement each other. 136

To illustrate the spectral variability produced by mixed debris within the plastic accumulation 137

patches, Figure 2 shows images ID 3 and ID 4 from Indonesia, including the polygons manu- 138

ally delineated. Each point represents the mean index value for a class, along with its standard 139

deviation and minimum and maximum bounds to visualize intra-class variability and inter-class 140

overlap. These two scenes were selected to exemplify how the plastic patch composition alters 141

its spectral response, and therefore, class separability. In ID 3, vegetation primarily appears 142

along the riverbanks, and the plastic patch appears homogeneous. As a result, although the 143

maximum values of the vegetation and plastic classes partially overlap, their mean values are 144

distinct, and the standard deviations do not intersect, indicating that these classes can be sta- 145

tistically separated. In contrast, ID 4 reveals green dots within the plastic patch, likely due to 146

embedded vegetation. This leads to greater spectral variability and overlapping standard devi- 147

ations between the plastic and vegetation classes. This observation raises questions about the 148

purity and composition of the plastic patches—issues that are further analyzed in the Discussion 149

section. 150

River plastic hotspot detection 151

The Random Forest (RF) classifier was trained on image IDs 1–6 and tested on IDs 7–10 for 152

each river, all representing different dates of the same hotspot section. The performance of the 153

model on each river is shown in Figure 3, with the true-colour image in the first row and the 154

classification map overlaid on the second row. The three selected images are from the test sets 155

and show how well the classifier performs in identifying the different coverages. The quantitative 156

analysis is presented in Table 1, which displays the overall accuracy or F1-score of the Plastics 157

class for the three rivers. Also in this table are the results not only for the classification using the 158

satellite bands (LA2 B1-12), but also the performance when including the spectral indices (NDVI, 159

PI, FDI, SI13). By also providing the indices to the classifier, performance improves in all cases, 160
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Figure 2: NDVI and SI13 values for each class. The centre dot represents the mean index value
for each class, with the dashed lines representing two standard deviations. The dashed outer
lines represent the minimum and maximum values of the indices for each group.

especially in Indonesia and Ghana, where it increases by more than 20%. This confirms the 161

discriminatory capacity of the indices to detect plastic accumulation mentioned in the previous 162

section. 163

Table 1: Rivers classification metrics.

Dataset
Indonesia Guatemala Ghana

Only
Bands

Overall Accuracy 98.8% 76.7% 70.0%
Plastics F1-score 71.8% 71.9% 73.7%

Bands +
Indices

Overall Accuracy 99.3% 83.6% 73.0%
Plastics F1-score 98.5% 91.9% 76.6%

Hotspot maps can be obtained by generating classification maps for various dates, and the 164

areas with the highest frequency of plastic accumulation can be identified. As shown in the river 165

hotspot maps in Figure 3, plastics tend to accumulate in the river bends. In this case, the per- 166

centage represents the proportion of images in which plastic was detected at each location, with 167

100% indicating detection in all 10 images of the dataset for a given river. In Guatemala, plastics 168
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a) Indonesia b) Guatemala c) Ghana

Figure 3: Sentinel-2 imagery of riverine plastic pollution. Top row: representative image per
river with plastic patches highlighted in yellow and annotated scale (same for each column).
Middle row: scene classification maps. Bottom row: hotspot maps from ten-image aggregates
per location.

accumulate mainly at both ends of the reservoir. In Ghana, accumulation can be observed at the 169

downstream end of the river section, where the river course is affected by a water-control weir. 170

The left side of the river is also highlighted; however, this may be influenced by pixels mixed with 171
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adjacent infrastructure. 172

Band importance for the classifier 173

A key aspect of understanding classifier learning is evaluating the relative influence of the spec- 174

tral bands and indices used by the model. The feature importance of the classifier shown in Fig- 175

ure 4 represents the absolute contribution of each variable by measuring for each decision node 176

in the RF how much the not purity increased based on the respective variable. RF importance 177

is dimensionless and dataset-dependent; normalizing it will lose the magnitude of importance. 178

The importance rankings reveal clear regional differences in the importance of spectral features. 179

For instance, the most influential band in the Indonesian model is Band 11, whereas Band 1 and 180

Band 2 are the most critical for Ghana and Guatemala, respectively. When extending the anal- 181

ysis to include spectral indices alongside the bands, the feature hierarchy shifts. In particular, 182

SI13 is more relevant than any other band for Ghana, suggesting that indices can better capture 183

class-specific spectral responses under certain conditions. 184

Figure 4: Comparison of the importance of bands and indices for the RF model by river.

Generalizability of the river plastic detection method 185

A key aspect determining the applicability and generability of the presented model is its transfer- 186

ability capacity across diverse environmental settings. Given the inherent variability in riverine 187

systems, it is essential to evaluate how well a model trained in one context performs when ap- 188

plied to another. 189

Successful transference to another area within the river 190

The first step in evaluating model transferability involved applying a model trained on one sec- 191

tion of the Citarum River in Indonesia to a separate downstream location. For this purpose, six 192

Sentinel-2 images were processed using all the spectral bands, and classification was carried 193
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out without any additional tuning. As shown in Figure 5, both visual assessment and quantita- 194

tive metrics confirm a highly successful transfer, achieving an overall accuracy of 99.5%. On 195

a class-by-class basis, performance remained robust, achieving F1-scores of 99.9% for Water, 196

99.3% for Vegetation, and 96.1% for Plastic. This underscores the model’s capacity to effectively 197

generalize in comparable fluvial settings, despite a slight rise in misclassification between Plastic 198

and Vegetation due to their shared spectral characteristics. Importantly, this validation was con- 199

ducted on a much larger dataset than that used for training, with thousands of pixels per class 200

— 7767 for Water, 3696 for Vegetation, and 669 for Plastic — compared to the few hundred or 201

fewer pixels typically available in the training zone. 202

Figure 5: Sentinel-2 image and classification map transferring the model within the same river.

Improving generalization between rivers with spectral indices 203

Transferring the model between different rivers presents a greater challenge due to the distinct 204

environmental and spectral characteristics of each region. To systematically evaluate inter-river 205

transferability, models were independently trained using the 10 available images per river dataset 206

and validated on the corresponding 10 images of the target river. The results shown in Table 2 207

highlight the limitations of model generalization under diverse conditions. Table 2 excludes trans- 208

fer within the same river, as retraining the models using the ten available images per river maxi- 209

mizes the use of spectral variability for learning. However, this approach leaves no independent 210

data for intra-river validation, making it unsuitable for evaluating without risking overfitting. 211

Using only the bands to train the models, solely two of the transfer scenarios achieved OAC 212

values exceeding 70%. Furthermore, repeated runs of the same model configuration yielded 213

inconsistent outcomes, demonstrating a high degree of variability and underscoring the lack of 214

robustness in these cross-domain applications. These findings suggest that while intra-river 215

transfer is feasible, inter-river generalization remains limited under current conditions and may 216

require tailored domain adaptation strategies or additional data harmonization to improve stability 217

and accuracy. 218

To enhance model performance across diverse riverine environments, spectral indices were 219

incorporated into the classifiers as additional input features. This decision was based on the 220

spectral analysis results, which exhibited that specific indices offered improved separability be- 221

tween classes. As shown in the second row of Table 2, the inclusion of spectral indices led to 222

a notable improvement in classification metrics across nearly all transfer scenarios. All model 223

transfers showed enhanced accuracy and F1-scores, except for the Guatemala-to-Ghana case. 224

In several cases, the gain exceeded 20%, underscoring the utility of combining spectral bands 225

with derived indices. The transfer from Guatemala to Ghana showed an improvement of nearly 226
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Table 2: River classification performance metrics for the transferred model (OAC/F1-score).

Train
Indonesia Ghana Guatemala

Indonesia - 71.4% / 61.3% 54.5% / 43.5%
Ghana 54.1% / 68.6% - 89.1% / 84.1%Test

(Only Bands) Guatemala 51.6% / 62.1% 49.9% / 57.1% -

Indonesia - 87.9% / 87.1% 85.4% / 77.2%
Ghana 59.3% / 68.1% - 59.2% / 71.6%Test

(Bands + Indices) Guatemala 75.2% / 84.2% 69.9% / 85.8% -

30% in the Plastic class F1-score, highlighting the ability of indices to compensate for spectral 227

variability introduced by regional differences. Therefore, by combining the most predictive band 228

or index for each river in the RF classifier, the model achieves an average F1-score of 79% for 229

the plastic class. These results confirm that augmenting the feature space with targeted spec- 230

tral indices substantially improves the robustness and transferability of plastic detection models 231

across diverse fluvial systems. 232

Towards a general model 233

An alternative approach to improve the generality and robustness of the model involves training a 234

general model using a composite dataset that incorporates data from multiple river environments. 235

To this end, a combined training dataset was constructed using the first two images (ID 1 and 236

2) from each of the three rivers. Details of this combined dataset can be found in the Workflow 237

implementation section. 238

Several experiments have been conducted to evaluate the performance of the general model 239

under various conditions. The results shown in Table 3 confirm that incorporating spectral indices 240

generally enhances model performance. However, an even greater improvement is achieved by 241

selecting a minimal set of highly informative spectral features, obtained from the Band impor- 242

tance for the classifier section. This targeted feature selection reduces the introduction of noise 243

and redundancy from less relevant features, thereby improving classifier precision and stability. 244

Among the evaluated configurations, the selection of the most important spectral bands (B1, B2, 245

B11) yielded the highest classification accuracy for individual rivers. Nonetheless, this setup also 246

produced the lowest F1-score for the Plastic class in the second Indonesian location, indicating 247

a trade-off between peak accuracy and consistency across environments. The configuration 248

based on the most relevant features — combining bands and indices (B1, B2, SI13) provides the 249

best overall performance across datasets, offering a strong balance between generalization and 250

precision. 251

DISCUSSION 252

River plastic hotspot detection with good performance 253

This study demonstrates that accurate remote sensing of riverine plastic accumulation is feasible 254

using medium-resolution Sentinel-2 imagery, combined with strategic feature engineering and 255

cloud-based classification. By integrating spatial annotations from PlanetScope and spectral 256

indices tailored for plastic detection, we advance a transferable, reproducible, and operationally 257

viable approach to environmental monitoring within Google Earth Engine. 258
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Table 3: General model classification metrics.

Dataset
Indonesia Ghana Guatemala Indonesia 2 Average

OAC 94.2% 55.2% 86.9% 94.9% 82.8%Only
Bands Plastics F1 97.8% 60.6% 84.4% 89.8% 83.2%

OAC 95.8% 62.1% 89.3% 97.3% 86.1%Bands +
Indices Plastics F1 97.5% 64.5% 87.7% 95.8% 86.4%

OAC 96.9% 100% 89.3% 93.1% 94.8%B1 B2 B11 Plastics F1 98.1% 100% 92.2% 58.6% 87.2%
OAC 96.6% 100% 88.1% 98.7% 95.9%B1 B2 SI13 Plastics F1 97.9% 100% 91.8% 93.9% 95.9%

High classification accuracy was achieved in within-river applications, as shown by the 99.5% 259

overall accuracy in the intra-river transfer test on the Citarum River in Indonesia. The model per- 260

forms exceptionally well in the intra-river transfer scenario, even when evaluated on a significantly 261

larger number of pixels. This strong performance is likely due to the proximity of the two locations 262

on the Citarum River, which share similar environmental conditions, including vegetation types 263

and pollution characteristics, thereby facilitating effective model generalization. Additionally, the 264

use of a hand-curated training dataset likely contributed to this result by minimizing outliers and 265

ensuring high-quality, representative samples for each class. 266

Inter-river transfers, while more challenging, were significantly improved through the inclusion 267

of spectral indices, with several scenarios showing gains of over 20% in classification perfor- 268

mance. These improvements are closely linked to the spectral characteristics observed in each 269

river, where plastic, water, and vegetation display distinct reflectance patterns influenced by envi- 270

ronmental conditions such as turbidity, surrounding vegetation, and debris composition. Among 271

the indices tested, SI13—specifically designed for plastic detection—consistently ranked as one 272

of the most important features across all locations, enhancing class separability. Additionally, 273

NDVI and PI contributed to classification accuracy in the Guatemalan dataset, where vegetation 274

in the patch introduced variability that these indices helped distinguish. 275

Prior studies have achieved high accuracy in coastal and marine contexts using multispec- 276

tral data and machine learning19,36. However, only a few have addressed the generalizability of 277

these methods across geographically diverse sites. Our workflow builds on previous Sentinel- 278

2 approaches but differs in scope and transferability.23 achieved 80–90% accuracy using a RF 279

general model for coastal waters but requiring in-situ validation data and without the hydrological 280

complexities of river systems.24 employed spectral indices and temporal series analysis to mon- 281

itor floating debris dynamics and estimate the plastic cover at the subpixel level within a single 282

river system. On the Tisza,25 trained several ML models using VHR-assisted labels, with RF, 283

Artificial Neural Network (ANN), and Support Vector Classifier (SVC) achieving the best perfor- 284

mance. While validation F1 was high (SVC 0.94, ANN 0.93, RF 0.91), generalization on larger 285

unseen data dropped to medium-poor (RF 0.69, SVC/ANN 0.62) due to single-river dependence. 286

Our inter-river plastic F1 = 79% is therefore competitive under unseen data, while our intra-river 287

tests preserve very high accuracy. 288

Our work demonstrates that, even with Sentinel-2’s moderate resolution, when integrated 289

with PlanetScope-based ROI annotation, meaningful detection of plastic accumulations is pos- 290

sible, especially when combined with targeted feature selection and cloud-based processing. To 291

support scalability and broader impact, we provide a GEE-based application called Plastic River 292

Classifier (https://plastic-monitoring.projects.earthengine.app/view/river-plastic-m 293

onitoring) that allows users to apply the trained classifier to rivers globally. This app serves as 294

a first step toward operational use of our classifier and supporting wider plastic monitoring using 295
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generalized models. 296

Are we really detecting plastic? 297

Determining whether the detected targets are truly plastic remains a complex but critical ques- 298

tion. In practice, what we identify as “plastic patches” are often aggregations of heterogeneous 299

debris, including various types of plastics, floating vegetation, large wood, and other anthro- 300

pogenic materials37,38. These mixtures can vary significantly between rivers and even across 301

seasons within the same location7,39. This result highlights the importance of awareness of 302

mixed values and how this may impact the training process and classification outcomes. It is 303

important to emphasize that quantitative estimation of plastic concentration is beyond the scope 304

of this study, we deliberately focused on well-documented polluted rivers where multiple inde- 305

pendent studies have confirmed extensive macroplastic accumulation19,40–42. 306

Visual inspections and spectral variability in Indonesia indicate accumulations composed of 307

mixed waste, where plastics are mixed with water hyacinths, organic material, and other types 308

of litter. This composition results in increased heterogeneity in the spectral signature, yet char- 309

acteristic plastic responses remain discernible. In Guatemala, the challenge lies in the dense 310

vegetation, where shadows cast by overhanging canopy elements alter the reflectance profiles 311

of surrounding pixels. The narrow geometry of the Odaw river in Ghana often results in mixed 312

pixels that encompass both the water channel and adjacent land, thereby diluting class sep- 313

arability. The coarse spatial resolution of Sentinel-2 (10 × 10 m) exacerbates the problem of 314

non-pure pixels, as plastic patches share spectral space with surrounding materials and water. 315

Despite these limitations, visual inspection of the images and spectral patterns supports the in- 316

terpretation that many of the targets identified are mostly plastic. Spectral indices such as SI13 317

have further proven effective in enhancing class separation. 318

Beyond validating whether the detected targets are truly plastic, our approach also opens 319

new possibilities for understanding how debris accumulates and redistributes within river sys- 320

tems over time. Our methodology has proven capable of differentiating between anthropogenic 321

and organic materials in rivers. By applying this workflow across multiple rivers and seasons, 322

future analyses could reveal how hydrological dynamics, vegetation growth, and flow variations 323

influence the location and persistence of floating debris hotspots. Such insights would contribute 324

to a more comprehensive understanding of river plastic dynamics, enabling better planning of 325

cleanup operations, improved prediction of accumulation zones, and more efficient allocation of 326

mitigation resources. 327

Generalization and scalability 328

Model generalization across diverse river systems is a critical step toward global applicability of 329

remote sensing-based plastic monitoring. While intra-river generalization yielded strong results, 330

inter-river model transfer exposed limitations due to variations in plastic patch composition, eco- 331

hydrological conditions, and technical limitations, such as the sensor’s spatial resolution. The 332

current selection of rivers includes a wide range of features. In Indonesia, high turbidity and 333

the co-occurrence of plastics with floating vegetation create mixed spectral signals that increase 334

classification uncertainty20. In Guatemala, clearer water improves class separability, although 335

canopy shadows from riparian vegetation locally reduce accuracy19. In Ghana, narrow chan- 336

nels and nearby built-up areas cause pixel mixing, limiting detection precision43. We encourage 337

follow-up studies in other river systems to also explore and implement the effect of other factors. 338

Nevertheless, integrating spectral indices opens a new avenue for performance enhancement 339
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tailored to class separability. Overall, the generalization performance can be considered pos- 340

itive, especially given the diversity and complexity of the test sites. In particular, the lowest 341

results are consistently observed when the models are tested on the Ghanian dataset, which 342

is expected given its mixed pixels with surrounding land features. These edge effects compli- 343

cate accurate classification, highlighting the need for additional strategies—such as unmixing or 344

spatial filtering—to further enhance model generalization in such challenging settings. 345

The general models trained combining images from several rivers improved performance, 346

suggesting that greater training data diversity enhances generalization capabilities. This finding 347

aligns with the literature advocating heterogeneous datasets for remote sensing model devel- 348

opment16. Integrating spectral indices into the classifier, along with strategic band reduction, 349

demonstrably enhances classification performance while minimizing the volume of acquired in- 350

formation. Scaling this approach globally would require the dataset to include more rivers under 351

different conditions and to incorporate ground-reference data for validation. 352

Another direction for improving the scalability of our approach is to simplify the manual an- 353

notation step required for model training. Although unsupervised and self-supervised learning 354

methods are promising, their accuracy currently remains below that of supervised approaches. 355

Nonetheless, recent research is moving in this direction:22 introduced a Naı̈ve Bayes classifier 356

that performs well with limited training samples, and44 proposed the SAMSelect algorithm to 357

interpret floating marine debris from Sentinel-2 using a small annotated dataset. Such devel- 358

opments could eventually reduce the dependency on high-resolution commercial imagery and 359

enable semi-automated generation of training data for large-scale. 360

Limitations of the study 361

Despite the promising results of our approach, several technological limitations currently hinder 362

its broader operational deployment. One significant challenge is harmonizing data across mul- 363

tiple satellite platforms. Aligning imagery from Sentinel-2 and high-resolution sources, such as 364

PlanetScope, for the same date and location proved particularly challenging, yet it is essential 365

for accurately delineating training and validation ROIs. In highly dynamic rivers, plastic patches 366

can shift position completely within a few hours due to flow velocity or wind, which may introduce 367

spatial discrepancies between acquisitions. To minimize this effect, all images were carefully 368

reviewed, and only those showing consistent patch alignment were used for annotation and 369

training. Furthermore, manual ROI annotation ensures high-quality training data, but it is time- 370

consuming and requires visual expertise, limiting the scalability of model development across 371

new regions. In the future, semi-automated or unsupervised pre-screening methods could help 372

mitigate these limitations and further streamline the annotation process. 373

Additional issues include cloud cover and atmospheric interference, which remain persistent 374

obstacles in optical remote sensing. Semi-transparent clouds and cast shadows can introduce 375

spectral noise, which affects both classification accuracy and confidence in predictions. Vege- 376

tation and canopy cover can also obscure the river surface, particularly in tropical or forested 377

regions, while seasonal differences such as snow, ice, or extreme illumination angles modify re- 378

flectance and complicate the interpretation of spectral signals. During the night, optical systems 379

are inherently limited, restricting monitoring to daylight conditions. Sentinel-2’s 10-meter resolu- 380

tion, while sufficient for identifying larger accumulations, struggles to detect smaller or dispersed 381

patches, especially in narrow or vegetated channels. Furthermore, near-real-time applications 382

are constrained by the temporal resolution and latency of Sentinel-2 data. Sentinel-2 revisits the 383

same location approximately every five to ten days at the equator (with shorter intervals at higher 384

latitudes), and Level-2A images are typically released 24–48 hours after acquisition. Therefore, 385

for short-term pollution events, this satellite may not provide the necessary temporal frequency. 386
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To overcome some of these limitations, a multi-sensor approach offers substantial potential. 387

Combining optical data from satellites like Sentinel-2 and PlanetScope with radar imagery from 388

platforms such as Sentinel-1. Radar systems, which are unaffected by cloud cover or light con- 389

ditions, and are capable of detecting surface texture and moisture changes, can complement 390

optical observations. This can provide significant improvements in temporal coverage and in 391

persistently cloudy regions such as Southeast Asia. Furthermore, emerging sensors, such as 392

ESA’s CHIME (Copernicus Hyperspectral Imaging Mission), promise to deliver high-resolution 393

hyperspectral data, enabling more detailed spectral discrimination of plastics. Additionally, the 394

increasing availability of CubeSat constellations, such as those operated by Satellogic and Black- 395

Sky, could provide supplementary high-frequency, high-resolution observations. 396

Future directions 397

This study establishes a semi-automated, cloud-based workflow for riverine macroplastic detec- 398

tion using multispectral satellite data. research should build on this foundation by advancing 399

both fundamental, computational, and practical aspects. A key aspect arising in this study is that 400

band selection enhances classification performance. However, these techniques are not avail- 401

able in the native language of GEE. Developing feature selection techniques compatible with 402

GEE should be explored, as well as exploring using other computational environments for our 403

methodology. 404

Similar to previous studies, we found that many pixels contain mixed materials, resulting in 405

mixed spectral signatures. Spectral unmixing methodologies may be explored in the future to 406

better detect the presence of plastics in such situations. Spectral databases of plastics and 407

other materials are key for this. The current databases12,13,17 cover only limited plastic polymers, 408

item types, and states of degradation and weathering, and should be expanded for global river 409

environments. Unmixing techniques are computationally intensive and currently limited in GEE. 410

Future improvements in cloud computing may enable its practical application for refining plastic 411

detection by accounting for sub-pixel heterogeneity. 412

In this study we limited the detection to whether plastics were present in pixels or not. Future 413

fundamental work may also be used to identify the minimum detectable item size and plastic 414

concentration of current and future satellite sensors. Those insights can be used to develop 415

methods to move from detection to quantification. Field-target experiments will be an important 416

step towards understanding the effects of type size and concentration on detectability. In the 417

marine domain,45 have already managed to test different floating litter targets and demonstrate 418

the detectability using Sentinel-2.24 estimate plastic cover at the subpixel level within a single 419

river system, employing spectral indices and temporal series. For rivers,15 reported results from 420

a pilot target experiment using polyester (PES) sheets and PET bottle targets. Here, the item 421

density of 8 items/m2 was not sufficient for detection using Sentinel-2. The sheets of 1x30 m2
422

and were detected with however. Future work should extent such experiments by testing (i) 423

commonly found items in rivers globally, (ii) a wide range of item densities, including mixtures 424

with other materials, and (iii) both riverbank and river surface backgrounds. 425

Another avenue towards more accurate quantification using satellites is parallel collection 426

of ground truth data. We recommend designing calibration experiments in rivers with varying 427

characteristics, and collecting in situ data on plastic concentration and composition at the river 428

surface and on riverbanks. Additional spectral measurements can be taken using handheld 429

spectrometers, or multispectral cameras with the same bands as Sentinel-2 (or other satellites). 430

We specifically encourage to focus on areas with active collection of plastics from rivers, ei- 431

ther through volunteer efforts along riverbanks or direct collection from the river surface. Future 432

developments should also integrate collaboration with citizen science initiatives and local stake- 433
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holders to identify plastic hotspots. Partnerships with programs such as Plastic Pirates46 and 434

Clean Rivers47 can provide complementary in-situ validation data at regular intervals, thereby 435

improving temporal coverage and calibration accuracy. In addition, initiatives such as the Plastic 436

Cup along the Tisza River28 maintain consistent, georeferenced records of polluted areas that 437

could serve as valuable ground truth for model validation and refinement, improving long-term 438

river plastic monitoring. 439

Finally, we encourage to use our methodology for long-term and large-scale time series anal- 440

ysis to better understand the factors that drive river plastic and retention. Fundamental studies 441

to date mostly rely on limited measurements in space and time. Our remote sensing-based ap- 442

proach may extend data to multiple years, and covering entire river courses. Combining remote 443

sensing-based plastic detection with data on hydrology, river characteristics, and anthropogenic 444

factors may shed new light on the driving mechanisms of plastic entry, transport, and retention 445

in rivers. Such efforts will also improve the scalability, and generalization of our plastic hotspot 446

detection method to other river environments globally. Furthermore, the proposed methodology 447

could be extended to various terrestrial and coastal applications, including monitoring anthro- 448

pogenic debris on shorelines, land-based dumps, and landfill areas, but also for other classi- 449

fication tasks such as vegetation mapping, land-cover change detection, and water-quality or 450

sediment classification in aquatic environments. 451

Conclusion 452

This study presents a scalable, cloud-based workflow for detecting macroplastic hotspots in 453

rivers using freely available Sentinel-2 imagery. By combining high-resolution PlanetScope an- 454

notation with spectral feature engineering and Random Forest classification within Google Earth 455

Engine, we demonstrate the feasibility of transferring trained models across distinct river sys- 456

tems. Our results demonstrate high intra-river accuracy (up to 99.5%) and promising inter-river 457

transferability (F1-score of 79%) when utilising targeted spectral indices, such as SI13. These 458

results are competitive and surpass those reported in similar state-of-the-art studies, such as25, 459

who achieved an F1 score of 94% for intra-river and 69% for inter-river generalization. These 460

findings support the development of generalizable classifiers that are robust to environmental 461

variability and pixel mixing challenges, especially in complex fluvial settings. The workflow’s 462

integration into an open-access GEE application ensures operational utility and reproducibility, 463

offering researchers a practical tool for monitoring plastic pollution. Future work should focus on 464

expanding annotated training datasets, improving spectral unmixing techniques, and enhancing 465

spatial resolution to enable finer-scale detection and quantification. Our approach contributes 466

to the growing field of remote sensing for environmental monitoring by operationalising plastic 467

detection at the river scale, bridging the gap between research and field-deployable solutions. 468
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Requests for further information and resources should be directed to and will be fulfilled by the 471

lead contact, Ámbar Pérez-Garcı́a (ambar.perezgarcia@wur.nl). 472
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Materials availability 473

The study generated the Plastic River Classifier GEE application: https://plastic-monitorin 474

g.projects.earthengine.app/view/river-plastic-monitoring. 475

Data and code availability 476

• All data reported in this manuscript is available at Mendeley Data: https://data.men 477

deley.com/preview/tczwvtzmys?a=476f97c0-e367-4d52-8fc7-edc79bb4f4b9 (DOI: 478

10.17632/tczwvtzmys.1) 479

• The source code is available from https://github.com/AmbarJade/plastics-hotspot 480

s-identification.git. 481

• Any additional information required to reanalyze the data reported in this paper is available 482

from the lead contact upon request. 483
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STAR METHODS 667

Method details 668

Overall methodology. 669

This study developed a semi-automated, cloud-based workflow to detect macroplastic hotspots 670

in river systems using multispectral satellite imagery and machine learning. The method inte- 671

grates high-resolution commercial imagery for manual annotation and medium-resolution Sentinel- 672

2 data for classification within the Google Earth Engine (GEE) environment and using Python, 673

version 3.8.10 (via Jupyter Notebook). 674

The design of our methodology builds upon earlier efforts that applied Sentinel-2 data and ML 675

models for detecting floating or stranded plastics. In particular,23 developed an automated ma- 676

rine floating plastic detection system using Sentinel-2 data, ML models, and indices such as FDI 677

and PI, achieving accuracies of 80–90% in the coastal waters of the Mediterranean. However, 678

in-situ validation data were required to train the models, and unlike marine environments, river 679

systems pose additional challenges due to diverse vegetation types, variable water composition, 680

and turbidity conditions.24 demonstrated the utility of Sentinel-2 time-series composites for track- 681

ing inland debris persistence using GEE and spectral indices within a single river system.25 used 682

VHR images to identify litter spots and tested the generalization of ML classifiers on unseen data 683

under varying hydrological conditions, achieving an F1-score of 69% with RF. These studies in- 684

spired our approach but also revealed two key gaps: the lack of better cross-river generalization 685

and the limited reproducibility of local workflows. 686

To address these issues, we implemented a cloud-based pipeline in Google Earth Engine 687

that couples high-resolution manual annotation with Sentinel-2 spectral features and optimized 688

band selection, enabling a scalable and generalizable plastic-detection framework. The ap- 689

proach includes the following steps: (1) locating the hotspot, (2) delineating the ROIs in high 690

spatial resolution images, (3) exporting them to the cloud to apply them to high spectral resolu- 691

tion images, and (4) training a machine learning classifier in the cloud (Figure 6). In this study, 692

a plastic hotspot is defined as an area where the surface concentration of visible plastic debris 693

is notably higher than in its surroundings, reflecting localized accumulation driven by hydrologi- 694

cal, geomorphological, or anthropogenic factors9. The workflow uses satellite remote sensing, 695

integrating high-resolution imagery, spectral analysis, and cloud-based machine learning. The 696

ultimate goal is to facilitate large-scale and scalable monitoring of plastic pollution across diverse 697

river systems globally. 698

The first step involves locating macroplastic accumulations, or hotspots, in rivers using high 699

spatial resolution images. This process is entirely manual, relying on local knowledge, satellite 700

imagery, and supporting information from news reports and community observations to identify 701

plastic patches. The spot can be corroborated via Google Earth Pro, which provides a user- 702

friendly interface for visually screening satellite imagery across different periods. In the second 703

step, we manually define regions of interest (ROIs) within these hotspots using VHR imagery, 704

such as SkySat (0.5 m/px) or Dove (3 m/px) from PlanetScope48. These serve as spatial ground- 705

truth references for subsequent spectral analysis and the area where the classifier will be applied 706

is also outlined. The third step entails extracting spectral information by uploading the spatially 707

annotated ROIs to cloud systems. The Sentinel-2 images will be temporally aligned with the 708

high-resolution PlanetScope images in which polygons were delineated to avoid misclassifica- 709

tions. This alignment was critical to minimize misclassifications, although challenges such as 710

water-driven displacement of plastic between acquisitions were noted and factored into data in- 711

terpretation. This allows for the precise extraction of high spectral resolution data corresponding 712

to accurately located macroplastic patches. Finally, in the fourth step, we conduct a spectral 713
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Figure 6: Plastic hotspot detection methodology: (1) locating the hotspot, (2) delineating the
ROIs in high spatial resolution images, (3) exporting them to the cloud to apply them to high
spectral resolution images, and (4) training a machine learning classifier in the cloud. This figure
don’t have scale because it is for illustrative purposes.

analysis and machine learning classification in the cloud system. Using the labelled pixels, we 714

train a classifier using all the spectral bands and some spectral indices. Model training and test- 715

ing are fully executed within GEE, leveraging cloud infrastructure to process large volumes of 716

data efficiently and without the need for local storage. This methodology is tested across three 717

different rivers—located in Indonesia, Guatemala, and Ghana—representing varied geographi- 718

cal and environmental conditions. For each river, an individual classifier is trained and evaluated, 719

followed by inter-location and cross-river transfer experiments. This approach enables the con- 720

struction and evaluation of a generalizable model that can identify plastic accumulations under 721

various scenarios. 722

Study areas and datasets. 723

This study focuses on three rivers located in distinct geographic and environmental contexts: the 724

Citarum River in Indonesia (6.92◦S, 107.48◦E), the Motagua River in Guatemala (14.76◦N, 90.50◦W ), 725

and the Odaw River in Ghana (5.54◦N, 0.22◦W ). These rivers were selected due to their known 726

high levels of macroplastic pollution and their contrasting environmental characteristics40. Sev- 727

eral studies have confirmed these systems as significant plastic accumulation hotspots19,41,42. 728

The Odaw flows through the densely populated national capital of Accra, the Citarum faces both 729

high levels of plastics and floating water hyacinths, and the Motagua is impacted by a dam. 730

Together, they represent a diverse set to evaluate model performance and transferability under 731

varying landscape and spectral conditions. Table S1. [Sentinel-2 dataset with the number of 732

pixels identified per class.] contains the information of the Sentinel-2 dataset used to train and 733

test the model. Table S1. [Sentinel-2 dataset with the number of pixels identified per class.] 734

also includes the number of pixels per class obtained with the polygons delineated using the 735
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high-resolution imagery, as these are relevant for subsequent sections. 736

Each study site presents unique environmental and remote sensing challenges. The Citarum 737

River (Indonesia) flows through densely populated urban areas, often accumulating floating 738

waste mixed with organic debris and sediments. This river often has turbid water, and occa- 739

sionally small sand islands form that can support some vegetation. This mixture results in com- 740

plex spectral signals, especially for the Plastic and Vegetation classes. In contrast, the Motagua 741

River (Guatemala) traverses a more forested landscape, where dense canopy cover introduces 742

frequent shadows that influence pixel reflectance. The Odaw River (Ghana) presents one of the 743

most challenging conditions due to its narrow channel width, which often leads to pixel mixing 744

with adjacent urban surfaces. 745

Sentinel-2 imagery, provided openly by the European Space Agency (ESA), offers global 746

coverage with revisit times of 5 days at the equator and has a spatial resolution of 10 m49. The 747

atmospherically corrected Level-2A Sentinel-2 products, generated using the Sen2Cor proces- 748

sor, provide surface reflectance values suitable for land-based applications. While the spectral 749

information is extracted from Sentinel-2 images, spatial information relies on PlanetScope and 750

SkySat imagery. These are commercial products with near-daily revisit capability, offering very 751

high spatial resolution (0.5–5 m)48. However, access to PlanetScope and SkySat data requires 752

a subscription or license, which can limit scalability. Through a Campus License we had access 753

to the Planet image archives. During the annotation process, both the RGB and Near-Infrared 754

(NIR) bands from PlanetScope were examined to verify ROI composition. 755

Despite efforts to temporally align Planet and Sentinel imagery within a two-day window, 756

several challenges emerged across all datasets. One major issue was the displacement of 757

plastic patches caused by water flow or wind, resulting in visible differences between images 758

taken just a few hours apart. Additionally, changes in solar illumination angles introduce shadow 759

patterns, especially under vegetated riverbanks, such as in Guatemala, which complicates class 760

identification. Cloud cover, particularly prevalent in the Indonesian dataset, further introduced 761

noise and data gaps, with semi-transparent clouds or haze affecting spectral accuracy. These 762

factors underscore the difficulty of synchronizing spatial and spectral data across platforms. 763

Workflow implementation. 764

The workflow consists of four main stages: (1) identification of visible plastic accumulation 765

hotspots through manual inspection of high-resolution imagery and supporting field information; 766

(2) delineation of ROIs in PlanetScope imagery; (3) temporal alignment of ROIs with Sentinel-2 767

scenes within a few day window (depending on the river dynamics); and (4) supervised classifi- 768

cation using Random Forest (RF) models in GEE. The training polygons were manually defined 769

and uploaded to GEE. The workflow was implemented entirely in the cloud using the native GEE 770

classifier ee.Classifier.smileRandomForest with 200 decision trees. 771

To identify large plastic patches for training the algorithm, we focused on rivers known for high 772

plastic pollution levels, leveraging common accumulation zones such as bends, urban discharge 773

points, and informal dumping sites. Polygons representing the ROIs are manually annotated 774

using high-resolution PlanetScope imagery within QGIS and then uploaded to Google Earth 775

Engine, where they are matched with Sentinel-2 images. A total of ten Sentinel-2 images per 776

river were selected, each temporally aligned with the PlanetScope reference imagery. The ten 777

images for each river correspond to different dates at the same location, where hotspots have 778

been confirmed. This pairing strategy enables the extraction of high-spectral-resolution data from 779

spatially accurate regions, thereby enabling precise training of the classification algorithm. The 780

widely used Random Forest (RF)50 classifier employs ensemble learning to combine predictions 781

from multiple decision trees51. 782
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This multi-layered workflow, built on the foundation of cloud-based processing and optimised 783

spectral input, aims to reduce computational load while increasing the accuracy and reliability of 784

macroplastic detection. To support broader application and scalability, we developed an interac- 785

tive GEE application that enables users to apply the trained model to Sentinel-2 imagery from 786

any location. 787

Spectral features and indices. 788

Spectral indices are combinations of bands that aim to highlight a property or characteristic of a 789

surface by leveraging the contrasting spectral reflectance between one property or characteristic 790

and another. We used the Normalized Difference Vegetation Index (NDVI), the Sentinel Index 1- 791

3 (SI13)), the Plastic Index (PI), and Floating Debris Index (FDI) in our work. Below these indices 792

are briefly explained. 793

Normalized Difference Vegetation Index (NDVI) 794

The Normalized Difference Vegetation Index (NDVI) combines bands in the red and NIR 795

range to highlight vegetation health: 796

NDV I =
RNIR −RRED

RNIR +RRED

(1)

The study by Carlson and Ripley52 shows that NDVI values are indeed correlated with frac- 797

tional vegetation cover, such that NDVI is an appropriate method for estimating floating vegeta- 798

tion cover in water bodies. In addition, the study highlighted that NDVI is sensitive to detecting 799

changes in fractional vegetation cover when the vegetation cover is less than 100% in the region 800

of interest. Since full vegetation coverage in river bodies is not a common occurance, applying 801

NDVI in this study to identify floating vegetation is highly opportune. 802

Sentinel Index 1-3 (SI13) 803

Recently, the SI13, spectral index combining bands one and three of Sentinel-2 in a normal- 804

ized difference, demonstrated to be effective for plastic detection from space15. 805

SI13 =
RGREEN −RAEROSOL

RGREEN +RAEROSOL

(2)

Plastic Index (PI) 806

The Plastic Index (PI)18 was introduced aiming to distinguish plastic litter in the water bodies 807

by leveraging the high reflectance of plastic in the NIR wavelengths: 808

PI =
RNIR

RNIR +RRED

(3)

The study by Themistocleous et al. (2020) validated the use of plastic float identification 809

using spectral signatures and UAV aerial images, confirming that PI was the optimal index for 810

identifying floating plastic in water bodies. Here, λNIR represents the near-infrared wavelength 811

(e.g., 859nm) and λRED represents the red wavelength (e.g., 645nm). 812

Floating Debris Index (FDI) 813

The Floating Debris Index (FDI)53 enhances the detection of floating debris patches in Sentinel- 814

2 imagery: 815

FDI = RNIR −R′
NIR

R′
NIR = RRE2 + (RSWIR1 −RRE2) · (λNIR−λRED)

(λSWIR1−λRED)
· 10 (4)

The FDI quantifies the difference between the observed NIR reflectance and a baseline re- 816

flectance derived by linear interpolation between the adjacent RE2 and SWIR1 bands. This 817
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approach minimizes atmospheric and observational obstacles, such as glint, aerosols, and solar 818

angle. As a result, it enables the detection of floating materials, including plastic debris, even in 819

the presence of thin clouds or haze. 820

Training and validation strategy. 821

For each river, ten Sentinel-2 images were selected and split into training (IDs 1–6) and test 822

sets (IDs 7–10). The models were initially trained using the 12 bands from L2A Sentinel-2. The 823

total number of training pixels per class is 702, 79, and 659 in Indonesia, 251, 130, and 332 in 824

Guatemala, and 201, 0, and 302 in Ghana, respectively, for the water, vegetation, and plastic 825

classes. For the test class, we have 1095, 167, and 788 in Indonesia, 240, 159, and 261 in 826

Guatemala, and 134, 0, and 124 in Ghana. 827

To evaluate generalization capacity, the model is trained using two images (IDs 1 and 2) from 828

each river and validated on a test set comprising three images: one from each river (ID 7) and 829

an additional location for the Citarum River in Indonesia (ID 11) with a much larger classification 830

area. Cross-river transferability was evaluated by training on one river and testing on another. 831

Intra-river validation was performed on an independent section of the Citarum River (ID 11), 832

which is larger for testing and has 7,767 pixels for water, 3,696 for vegetation, and 669 for plastic. 833

Feature selection. To improve classification performance, the spectral indices listed pre- 834

viously—known to enhance class separability—were also incorporated as input features. The 835

relative importance of each spectral band and index was computed using the RF feature im- 836

portance metric in GEE. The most relevant features (B1, B2, and SI13)) were used to construct 837

a reduced general model that achieved improved balance between precision and robustness 838

across rivers due to the reduction of redundancy and spectral noise. 839

Quantification and statistical analysis 840

Model performance was quantified using Overall Accuracy (OAC) and F1-score metrics, calcu- 841

lated from confusion matrices. No randomization, blinding, or inferential statistics were required 842

as the study relied on satellite data and deterministic classification. All statistical parameters, 843

including per-class F1-scores, are reported in the Results section and Tables 1–3. 844

Additional resources 845

The trained classifier and public application are available at: Plastic River Classifier: https: 846

//plastic-monitoring.projects.earthengine.app/view/river-plastic-monitoring 847

Further details and open-source code is available through the corresponding author. 848
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Research Highlights 

 

• Developed a GEE-based workflow for river plastic detection using 
Sentinel-2 data. 

• Used PlanetScope imagery to generate training ROIs for classifier 
development. 

• Achieved up to 99.5% intra-river accuracy and 79% F1-score in inter-river 
transfer. 

• Released an open-access application for global Sentinel-2 based plastic 
monitoring, 
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KEY RESOURCES TABLE 
 

Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited data 

Polygons from Sentinel-2 images This paper; Mendeley Data DOI: 10.17632/tczwvtzmys.1 

Software and algorithms 

Plastic River Classifier – Google Earth 
Engine application for global use 

This paper https://plastic-
monitoring.projects.earthengine
.app/view/river-plastic-
monitoring 

Google Earth Engine (GEE) Google / Earth Engine Team https://earthengine.google.com/ 

Python, version 3.8.10 (via Jupyter 
Notebook) 

Python Software Foundation https://www.python.org 

Source code for data processing  This paper; GitHub https://github.com/AmbarJade/p
lastics-hotspots-identification.git 
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