Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/1524
DC FieldValueLanguage
dc.contributor.authorFernández de la Nuez, Isabelen_US
dc.contributor.authorGarcía Cortí, Juan Luisen_US
dc.contributor.authorPacheco Castelao, José Miguelen_US
dc.date.accessioned2009-10-08T02:31:00Z-
dc.date.accessioned2018-03-07T08:57:41Z-
dc.date.available2018-03-07T08:57:41Z-
dc.date.issued2005en_US
dc.identifier.issn1130-4723en_US
dc.identifier.other"1685 ; 1708 ; 2069"-
dc.identifier.urihttp://hdl.handle.net/10553/1524-
dc.description.abstractA class of two-component, one-diemnsional, react-diffusion systems of the type usually found in Ecology are analysed in order to establish the qualitative behavior of solutions. It is shown that for diffusivities in the form D_j=d_j+b_j cos⁡(ωt+ ϕ) relationships can be derived from which amplitude destabilization can be assessed depending on the wavenumber k and the variable diffusion coefficients, specially the frequency ω. Therefore, time-dependent diffusivities can control the turing instability mechanism. The analysis is perfirmed using Floquet´s Theory. Numerical simulations for various kinetics are presented, and bifurcation diagrams in the plane (k, ω) are obtaineden_US
dc.languageengen_US
dc.relation.ispartofRevista de la Academia Canaria de Cienciasen_US
dc.sourceRevista de la Academia Canaria de Ciencias. XVI (1-2). pp. 89-98en_US
dc.subject.otherTeoria de la Bifurcaciónen_US
dc.subject.otherEcuaciones de reacción difusiónen_US
dc.titleBifurcations and turing instabilities in reaction-diffusion systems with time-dependent diffusivitiesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.absysnet329704-
dc.identifier.crisid1122-
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses
dc.type2Artículoen_US
dc.identifier.external1122-
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.fullNameFernández De La Nuez, Carmen Isabel-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (1,77 MB)
Show simple item record

Page view(s)

34
checked on Mar 9, 2024

Download(s)

46
checked on Mar 9, 2024

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.